简介:Trafficruleisakeyfactoraffectingtrafficflowandsafety.Wedevelopourmodels,includingthecellularautomatatrafficflowmodelaswellasthelinearregressionone,aimingatcalculatingtrafficflowandevaluatingsafetyconditionswithvariedtrafficrules.Then,wethoroughlyinvestigatefourtypesofpathsinafreeway,namelytwostraightlanes,threestraightlanes,ramps,androundaboutsascasestudiesanddiscussthedifferenttrafficrulesascomparison.Theresultsdemonstratethat“Keep-Right-Except-To-Pass”ruleisnotaseffectiveasthefreeruleinpromotingtrafficflow;however,thisruleensuressafetyfordriversbetterthanthefreerule.Additionally,anewtrafficrule,whichsetsdifferentpostedspeedlimitsforadjacentlanes,isproposedtopromotebettertrafficflowwithsafetyrequirementssatisfied.Furthermore,weapplyeffectiverulesandalternatives,leftdrivingnormsaswellasintelligentsystemasextensionandobtainbetterresults.Finally,model’ssensitivityanalysisregardingtoprobabilityofdeceleratingandpostedspeedlimitsprovesthestabilityofourresults.
简介:这篇文章集中于识别分享文件对等(P2P)(例如BitTorrent(BT))在一个树桩网络的边阶的交通。由分析应用程序的协议和交通,一个单身的用户的分享文件的P2P交通与极大地不同,这被发现传统并且另外的P2P(例如QQ)申请在深奥远程主机和遥远的端口的分发的交通。因此,一个方法基于远程主机(RHD)的组件和遥远的港口(RPD)的组件被建议识别象BT一样交通。这个方法仅仅在一个树桩网络依靠每台用户主机的流动信息,并且没有包收费载重需要被监视。在间隔,为并发的传播控制协议的立刻的RHD和为每台主机的用户数据包协议流动通过由每流动的远程主机属于的树桩网络组织流动分别地是计算的。在给定的条件上,立刻的RPD通过由遥远的港口组织流动修改立刻的RHD被计算。一位主人是否一直在使用象BT一样应用,能为时间的一个时期从立刻的RHD或平均RHD被推出。基于交通,特征是对比基于内容的方法识别变化多端的分享文件的P2P交通合适的更多的建议方法。试验性的结果证明这个方法与高精确性是有效的。
简介:Macro-trafficmodelisaneffectivetoolforsupportingtrafficprogrammertoThisarticleisbasedonthesoftwareproductsVISEM(demandmodel)andVISUM(supplymodel)fromPTVCompanyofGermany,andstudiesmacro-trafficmodelonthebasisofconsideringthattrafficsystemisaninteractivesystemofbetweenasupplysystemandademandsystem.
简介:ThereisnodoubtthattheurbanpublictrafficoperationsinChinasufferlossesandhenceitisnecessarytostudyresonablesubsidymechanismsfortheurbanpublictraffic.Onthebasisofanalyzingthemodesoftheurbanpublictrafficmanagement,weclassifythefinanciallossesintothepolicylossandthemanagementloss,accordingtowhetherthecostcanbecompensatedornot.Inaddition,aseriesofcriteriaareintroducedinordertoefficientlydecidetheamountofsubsidy.Finally,thispaperalsoexaminesthewayofbiddingadministration,whichisconsideredtobepromisinginthefutureofurbanpublictraffic.
简介:Objective:Thereisnosaferwaytotransportachildthanaschoolbus.FatalcrashesinvolvingoccupantsareextremelyrareeventsintheUS.Inrecentyears,schoolbustransportationbegantodevelopinChina.WewanttobringadvancedexperienceonschoolbussafetyinWesterncountriessuchastheUStodevelopingcountries.Methods:WesearchedthepapersrelatedtoschoolbussafetyfromMedline,ChineseScientificJournalsDatabaseandtheWeboftheNationalHighwayTrafficSafetyAdministration(NHTSA).Results:Therewereonly9papersrelatedtoschoolbussafety,whichshowedthathigherlevelsofsafetystandardsonschoolbuses,schoolbus-relatedtransportationandenvironmentallawsandinjurypreventionweretheprimaryreasonsforthedesiredoutcome.Fewschoolbusisrelatedtodeathsandinjuriesinthedevelopedcountries.Conclusions:Thedevelopingcountriesshouldmakestrictenvironmentallawsandstandardsonschoolbussafetytopreventchildren'sinjuryanddeath.
简介:Thebasictheoryandmethodofthecombinationforecastingareintroduced.Basedontheactualdatainanairline,thecasestudywaspresented.Inthecasestudy,twobasicforecastingmodelsaresetup,whicharethetime-regressionplusseasonalfactormodelandthelogarithmadditiveWintersmodel.Andtwocombinationmodelsareestablishedwiththebasicmodels,whicharetheoptimalcombinationmodelandtheregressivecombinationmodel.Theresultsofthestudyareguidabletothepractice.
简介:Networktrafficclassificationaimsatidentifyingtheapplicationtypesofnetworkpackets.ItisimportantforInternetserviceproviders(ISPs)tomanagebandwidthresourcesandensurethequalityofservicefordifferentnetworkapplications.However,mostclassificationtechniquesusingmachinelearningonlyfocusonhighflowaccuracyandignorebyteaccuracy.TheclassifierwouldobtainlowclassificationperformanceforelephantflowsastheimbalancebetweenelephantflowsandmiceflowsonInternet.Theelephantflows,however,consumemuchmorebandwidththanmiceflows.Whentheclassifierisdeployedfortrafficpolicing,thenetworkmanagementsystemcannotpenalizeelephantflowsandavoidnetworkcongestioneffectively.Thisarticleexploresthefactorsrelatedtolowbyteaccuracy,andsecondly,itpresentsanewtrafficclassificationmethodtoimprovebyteaccuracyattheaidofdatacleaning.Experimentsarecarriedoutonthreegroupsofreal-worldtrafficdatasets,andthemethodiscomparedwithexistingworkontheperformanceofimprovingbyteaccuracy.Experimentshowsthatbyteaccuracyincreasedbyabout22.31%onaverage.Themethodoutperformstheexistingoneinmostcases.
简介:Byusingthemodernlydevelopedtechniquesofpossibilityandset-valuedstatistics,thispaperdeter-minedthethresholdsofvariouscategoriesofnoiseannoyanceanddefinedthedose-responserelationbe-tweenthelevelsofnoiseandtheirannoyance.Threefactorscontrolledintheexperimentweretypesofnoise:impulseandtraffic;levelofnoise:5Leqfrom45—85dB(A);andperformancetask:withandwithoutspeechrecognition.NoiseinterferencewithspeechrecognitionwasmeasuredwiththeSDTmethod.Ourex-perimentalresultsshowedthatLeqofimpulsenoiseshouldbehigherthanthatoftrafficnoisetogetequalannoyance;thespeechrecognitiontaskmightlightentheexperienceofannoyance;thehigherthelevelofnoise,themoreitsinterferencewiththespeechrecognition,thatis,thelessthevalueofd′.
简介:Thisletterreportstrafficflowsensitivitytovisco-elasticity,withthetrafficflowmodelingbrieflydescribedatfirstandthenusedtodotrafficflowsimulationswhoseresultscanreflectthepropertiesofspatial–temporalevolutionofringtrafficflow.Itrevealsthatvisco-elasticityplayscrucialroleinformationoftrafficflowpatterns,implyingthatself-organizationoftrafficflowiscrucialindeterminingtrafficflowstatus.