学科分类
/ 25
500 个结果
  • 简介:综述了颗粒增强复合材料的基体材料增强颗粒的种类、选择方法,以及对复合材料性能的影响;同时介绍了界面的类型以及如何减少界面反应和改善界面的方法等,为颗粒增强复合材料的设计和制备提供理论支持。

  • 标签: 颗粒增强铝基复合材料 基体 增强体 界面
  • 简介:简单介绍了颗粒增强复合材料的强化机理,重点概述了颗粒增强复合材料的制备方法及其研究现状,包括搅拌铸造法、液态金属浸渗法、喷射沉积法、粉末冶金法、原位合成法,并总结了各自的优缺点,最后提出了颗粒增强复合材料的研究趋向。

  • 标签: 颗粒增强 强化机理 铝基复合材料 制备方法
  • 简介:生产高质量铸件的低压铸造工艺可以用来制造DuralcanA1-SiCp复合材料.添加不同百分含量(质量分数ω分别为9%、15%、20%和25%)的硅,随后可通过低压铸造工艺来铸造复合材料.2mm壁厚、无缺陷、高质量的高硅复合材料铸件也可以通过这种工艺获得.低压铸造工艺铸造出来的复合材料铸件的显微结构显示出颗粒呈均匀的分布,材料具有良好的强度性能.

  • 标签: 低压铸造 增强高 复合材料低压
  • 简介:本文总结了不同体系的SiC纤维增强Ti复合材料的界面反应特点。界面反应产物通常呈层状分布,产物类型与基体种类和纤维涂层的种类有关。如当基体为!型或!+β型钛合金,且SiC纤维表面存在C涂层时,界面反应产物通常为TiC(对于SCS-6SiC纤维还存在一层硅化物Ti5Si3),且靠近纤维的TiC晶粒非常细小,而靠近基体一侧的TiC晶粒相对粗大;当基体为Ti-Al金属间化合物(如super!2、Ti2AlNb、g-TiAl)时,界面反应产物除了含二元Ti的碳化物外,还存在Ti-Al-C的三元化合物,如Ti3AlC或Ti2AlC。

  • 标签: 钛基复合材料 SIC纤维 界面反应 透射电镜分析
  • 简介:采用平均粒径为800nm的超细SiC颗粒作为增强体,制备含SiC体积分数为15%的复合材料,研究烧结温度和强压处理对复合材料微观组织和力学性能的影响。研究表明,提高烧结温度可有效加速复合材料的致密化,与520℃下烧结制备的复合材料相比,610℃下烧结制备的复合材料具有更高的密度和较低的孔隙度,从而具有更高的硬度。610℃下烧结制备的复合材料的硬度为83.9HBS,远高于520℃烧结制备的复合材料的硬度(53.7HBS)。这主要是由于烧结温度的提高可加速原子扩散,有利于Al粉之间以及Al粉与SiC颗粒之间的结合,并改善界面结合情况。研究还表明,强压处理可以有效提高复合材料的致密度和降低孔隙的体积分数,610℃下烧结制备的复合材料经强压处理以后的密度为2.68g/cm3,接近于理论密度(2.78g/cm3),且硬度可达121HBS,抗拉强度、屈服强度和伸长率分别可达177.6MPa、168.6MPa和3.97%。

  • 标签: AL基复合材料 超细SiC 力学性能 显微组织
  • 简介:研究了经真空热压、热挤压工艺制备的涂覆颗粒(化学涂层工艺)增强Al-Fe-V-Si耐热铝合金复合材料在不同温度下的力学性能与摩擦磨损性能.实验结果表明:涂覆后的SiCp与基体结合更加牢固,涂覆层(Ni)的加入降低了材料内部颗粒(SiCp)与基体(Al-Fe-V-Si)之间的孔隙,10%SiC(Ni)/Al-Fe-Si(0812)复合材料在室温的断裂强度分别比基体和10%SiCp/Al-Fe-V-Si(0812)复合材料增加了62.15%和2.82%,在400℃时分别增加了55.3%和28.6%.复合材料耐磨性能比增强体未涂覆复合材料大大提高,在载荷50N,转速0.63m/s的工况下,经增强体涂覆的复合材料在300℃时为以磨粒磨损为主的磨损机制;高于350℃时,为以粘着磨损为主的磨损机制.

  • 标签: 涂覆粉末 热挤压 耐热铝基复合材料 颗粒增强
  • 简介:改善金属基体与石墨烯增强相的界面结合,是提高复合材料力学性能的关键。本文以化学镀铜石墨烯为增强相,采用粉末冶金和放电等离子烧结(SPS)技术制备镀铜石墨烯增强复合材料,研究镀铜石墨烯的添加量对复合材料力学性能和耐腐蚀性能的影响。结果表明:通过对石墨烯的敏化活化预处理和化学镀工艺,能够获得石墨烯表面铜颗粒尺寸均一、分布均匀、膜层完整,并具有良好结合力的铜镀层;镀铜石墨烯作为增强相可以改善石墨烯与基体的浸润性和界面结合,复合材料中石墨烯质量分数为0.2%时综合性能最优,其致密度达到99.63%,硬度、抗拉强度、弯曲强度分别为60.13HV,152.88MPa,659.47MPa,与纯相比,分别提高48.95%,149.48%和470.08%;但是由于复合材料中石墨烯的炭与基体构成腐蚀微电偶,使其耐腐蚀性能降低。

  • 标签: 化学镀铜 石墨烯 铝基复合材料 放电等离子烧结 力学性能 耐蚀性能
  • 简介:摘要:颗粒增强复合材料具有生产成本低、材料性能各向同性、阻尼性能优异等特点,受到航空、航天、汽车、电子等高技术领域重视。本文主要对颗粒增强复合材料制备工艺的专利申请进行统计分析,总结了专利申请中制备工艺种类以及其专利技术发展现状。

  • 标签: 颗粒增强 复合材料 制备工艺
  • 简介:摘要:通过混合盐反应内生的方法在ZL205铝合金基体中引入TiB2颗粒增强相,研究了TiB2颗粒增强ZL205复合材料铸态和热处理态的显微组织。研究表明:TiB2颗粒增强ZL205复合材料基本相组成为α-Al相、CuAl2相及TiB2颗粒。TiB2颗粒内生,改善了二者间的润湿性,促进分散,同时将颗粒增强体尺寸控制在1μm以下。复合材料坯体挤压,利用晶粒之间的滑动促进颗粒分散,挤压后再进行热处理,促进了颗粒的进一步分散,TiB2颗粒团聚得到改善。

  • 标签: 铝基复合材料 原位生成 微观组织
  • 简介:摘要:与传统的金属材料相比,金属复合材料拥有很多单相金属所没有的优良特性,在航空航天、交通运输、制造业等方面得到了广泛的应用,并逐步成为很多高技术领域中的一种重要材料。高熵合金由于其优异的强韧性、耐磨抗疲劳、电磁等特性,在航空航天领域有着广泛的应用前景。高熵合金粒子与复合金属基体间存在自然的金属界面结合特征,其热膨胀系数差异不大,可有效解决常规复合体系中存在的界面结合稳定性差和塑性不足等问题,是一种新型的复合体系的发展方向。

  • 标签: 高熵合金 铝基复合材料 制备方法
  • 简介:

  • 标签:
  • 简介:采用粉末冶金方法制备不同SiC含量的SiC/Fe-3Cu-C-2Ni-1.5Cr-0.5Mo复合材料,采用硬度计、扫描电镜、电子万能试验机、万能摩擦磨损试验机对材料进行测试,研究SiC含量对铁合金密度、组织结构、力学性能和干摩擦磨损性能的影响规律,并探讨其摩擦磨损机理。结果表明:当SiC的加入量为0.5%~2%(质量分数)时,复合材料的密度和强度均降低,但硬度和耐磨性能显著提高;当SiC加入量达到5%时,复合材料的密度、强度、硬度及耐磨性能均大幅降低。SiC含量为1.5%的复合材料耐磨性能最佳并能保持良好的力学性能,有望在气门导管、传动小齿轮等机械零部件上得到运用。复合材料的磨损机理为粘着磨损和磨粒磨损。

  • 标签: 铁基复合材料 SIC颗粒 耐磨性能 磨损机制
  • 简介:摘要:颗粒增强复合材料由于具有高强度、轻量化以及耐腐蚀等优势,所以该材料一般应用在航空航天等领域。本文首先详细分析强钛复合材料力学性能,并且结合现阶段粉末冶金法制备特点,进一步总结出粉末冶金法制备应用策略。

  • 标签: 粉末冶金法 钛基复合材料 力学性能 负面影响
  • 简介:以纳米SiO2颗粒增强体,采用粉末冶金法制备铜纳米复合材料。考察不同质量分数的纳米颗粒复合材料密度、硬度以及摩擦磨损性能的影响。结果表明:纳米SiO2颗粒的加入,使铜基体的硬度和摩擦磨损性能都得到了明显提高;但随着纳米SiO2质量分数的增加,复合材料的密度和硬度均呈下降趋势;当纳米SiO2质量分数为0.3%时,复合材料的减摩耐磨性最好。

  • 标签: 纳米SIO2 铜基复合材料 摩擦磨损
  • 简介:摘要:对如果说19世纪属于原材料得天下,20世纪属于加工材料的王朝,那么在对于材料要求越来越高的今天,谁能更好地拥有且正确应用由3种及3种以上性质不同的材料并通过各种高精尖工艺复合而成的复合材料,谁就准确地扼住了时代发展的喉咙,复合材料适应现代科学发展且具有强大生命力,其性能主要取决于基体合金和添加其中的增强物的特性分布以及所含比例,因此具有可塑性强应用方面广等特点,所以本篇论述旨在论述在当今科技发展迅速的今天复合材料的应用和高速加工。

  • 标签: 铝基复合材料 应用 高速加工
  • 简介:摘要:关于石墨烯增强复合材料的研究已成为当前金属复合材料的热点课题。就目前石墨烯增强复合材料的制备方法、力学性能进行了简要的介绍。重点阐述了不同制备方法对该类复合材料性能的影响, 并对石墨烯增强复合材料的工业化应用前景作了展望。

  • 标签:
  • 简介:将T700或Nicalon-SiC短纤维、碳粉、硅粉和少量碳化硅粉混合,在1900℃热压烧结制备短纤维增强C-SiC复合材料,并对其组织、结构及性能进行了研究.结果表明:SiCf/C-SiC的相对密度和室温强度分别为95.3%和24.38MPa,均高于Cf/C-SiC的相对密度和室温强度,热压烧结过程中Cf的损伤严重.短纤维增强C-SiC复合材料中,由于C相和SiC相的同时存在,在同一温度下的氧化行为表现为在氧化初期氧化质量损失率较大,C相的氧化起主要作用;随氧化时间的增长,氧化质量损失率逐渐减小;在氧化后期则质量增加,SiC相的惰性氧化起主要作用.SiCf/C-SiC复合材料的抗氧化性能优于Cf-C-SiC复合材料的抗氧化性能.SiCf/C-SiC复合材料在温度为1100℃~1400℃时,温度越高,氧化质量损失率越小,抗氧化性能越强.

  • 标签: 复合材料 短纤维 热压烧结 强度 抗氧化性能
  • 简介:通过微波烧结制备TiC/6061复合材料,采用TEM、EDS、XRD分析该复合材料结合界面的结构、元素分布和相组成;从热力学角度研究新相的形成机理。结果表明:结合界面存在厚度约为100nm的扩散型和反应型2种中间层,其与基体和增强相的邻接整洁、边界连续、结合紧密。扩散型界面,具有(111)Al//(240)TiC,[011]Al//[001]TiC的晶体学位向关系并形成半共格界面;反应型界面,由TiAl和微纳米级的Al4W相组成。界面TiAl相的热力学形成机理为Al和Ti元素通过扩散的方式首先生成TiAl3,之后随Ti元素的进一步扩散占据TiAl3中Al的位置,最终形成TiAl。

  • 标签: 微波烧结 铝基复合材料 界面 热力学