简介:在N-解析函数类中,对于无穷直线上的Riemann-Hilbert边值问题,通过轴的对称扩张法将其转化为在附加条件下相应的Riemann边值问题,从而建立了其齐次和非齐次问题的可解性理论。
简介:基于矩阵谱问题构造了一种实用的方法来对一类实轴上的可积方程的Riemann-Hilbert问题进行建模。当跳跃矩阵是单位矩阵时,孤立子解通过特殊约化的Riemann-Hilbert问题显性表示。作为一个范例,对于具有任意阶矩阵谱问题的多分量非线性薛定谔方程,给出了该方法的具体应用。
简介:ThispaperdealswiththeboundaryvalueproblemsforregularfunctionwithvaluesinaCliffordalgebra:()W=O,x∈Rn\Г,w+(x)=G(x)W-(x)+λf(x,W+(x),W-(x)),x∈Г;W-(∞)=0,whereГisaLiapunovsurfaceinRnthedifferentialoperator()=()/()x1+()/()x2+…+()/()xnen,W(x)=∑A,()AWA(x)areunknownfunctionswithvaluesinaCliffordalgebra()nUndersomehypotheses,itisprovedthatthelinearbaundaryvalueproblem(whereλf(x,W+(x),W-(x))=g(x))hasauniquesolutionandthenonlinearboundaryvalueproblemhasatleastonesolution.
简介:TheauthorsdefinethedirectionalhyperHilberttransformandgiveitsmixednormestimate.Thesimilarconclusionsforthedirectionalfractionalintegralofonedimensionarealsoobtainedinthispaper.Asanapplicationoftheaboveresults,theauthorsgivetheLp-boundednessforaclassofthehypersingularintegralsandthefractionalintegralswithvariablekernel.Moreover,asanotherapplicationoftheaboveresults,theauthorsprovethedimensionfreeestimateforthehyperRiesztransform.ThisisanextensionoftherelatedresultobtainedbyStein.
简介:LetS∞denotetheunitsphereinsomeinfinitedimensionalcomplexHilbertspace(H,<·,·>)Letz1,z2,…,z1bedistinctpointsonS∞Thispaperdealswithinterpolationofarbitrarydataonthezjbyafunctioninthelinearspanofthelfunctionswhenisasuitablefunctionthatoperatesonnonnegativedefinitematrices.Conditionsforthestrictpositivedefinitenessofthekernelareobtained.
简介:In[1-5],itwasinvestigaedtherealizationsofweightingpatternsinHilbertspaces.Thisnotedealswithdiscretesystemswhichhaveoperatorweightingpartterns.Theorems2-4arenecessaryandsufficientconditionsforJ-unitaryrealizationandforJ-selfadjoint
简介:本文研究了一般Riemann积分(即k-重积分)与Lebesgue积分的关系,证明了:若函数f在有界闭域D()Rk上Riemann可积,则f在D上Lebesgue可积且积分值相等.作为应用,讨论广义Riemann积分(即瑕积分与无穷限积分)与Lebesgue积分的关系.进而,给出了计算几类Lebesgue积分的方法.
简介:引入数值函数关于睇值函数的R-S积分,研究了此类积分的性质及向量值R—S积分存在的几个充分条件,并给出了积分的收敛定理.
简介:本文研究了Riemann积分和Lebesgue积分的本质区别,得到了结论:从Riemann积分推广到Lebesgue积分的本质是从不完备空间R[a,b]到完备空间L[a,b]的扩充.