简介:采用了有别于同一法的方法证明Moore-Penrose广义逆距阵的唯一性,并给出了求距阵A的Moore-Penrose广义逆的另一方法.
简介:该文研究了4×4分块矩阵M={A,B,C,DE,F,G,HJ,K,L,N,Q,R,S,T}的Moore-Penrose逆的表达式,并给出了M^+表达式成立时的条件.
简介:Generalizedsimplexvariantsbasedonsuccessivelinearsubprogrammingapproach(SLS)aredescribedinthispaper.Insteadofinversematrix,thesevariantsemployMoore-Penroseinverse.Theyarerespectivelycharacterizedbydifferentpivotingrules,Numericalresultsoflimitedtestsshowencouragingperformanceofthesevariants.
简介:设A为C^*-代数,a,a=a+δa∈A并且a^+存在,||a^+||||δa||〈1。定义a是a的稳定扰动,当且仅当aA∩(1-aa^+)A={0}。此时a^+存在,并且||a^+||的上界被给出。对于B—D广义逆ap^+,在给出一般表达式的前提下,对于一类具有“p-零”性质的B—D广义逆,得到了||ap^+||的一个上界。
简介:有效求解矩阵Penrose广义逆是一个困难的问题.首先将求解Penrose广义逆转化为求最小极值问题,结合粒子群算法和差分算法的优点,设计了混合智能算法.仿真实验结果表明:混合智能算法求解Penrose广义逆是有效的和可行的.算法易于计算机实现,计算精度高.
简介:1998年,王玉文,季大琴对于Banach空间中的线性算子引进了Tseng度量广义逆。文章补充说明,当空间为Hilbert空间时,Tseng度量广义逆的定义与Tseng广义逆的原始定义相同,当空间为n维欧几里德空间,T为矩阵算子,T的Moore-Penrose度量广义逆定义的(i),(ii),(iv)四个式子退化为Penrose方程。
简介:在一类新的G-凸度量空间中建立了一类新的KKM定理,统一、改进和发展了文献中的相应结果.作为应用,得到了几个新的匹配定理和不动点定理.