学科分类
/ 25
500 个结果
  • 简介:基于翼伞系统归航轨迹的特点,采用Serret-Frenet坐标系表示距离"平衡"轨迹的偏差,得到线性时不变的误差运动方程.由此误差方程可以得到控制量与轨迹偏差之间的传递函数,直接进行轨迹控制器的设计.对于控制器输入所需的轨迹偏差和偏差率可以采用解析的方法近似求解,极大地简化了计算.整个设计流程简单明了,采用PD控制器进行轨迹跟踪的算例表明此套方法的有效性.

  • 标签: 轨迹跟踪控制 坐标系 系统 翼伞 轨迹偏差 线性时不变
  • 简介:1.如图1是一个数表,现用一个矩形在数表中任意框出4个数abcd,则:(1)a、c的关系是:__;(2)当a+b+c+d=32时,a=__.

  • 标签: 方程组 数表 个数 数学
  • 简介:在小学数学中,列方程解应用题与用算术方法解应用题是有密切联系的。它们都是以四则运算和常见的数量关系为基础,通过分析题里的数量关系,根据四则运算的意义列式解答的。但是,两种解答方法的解题思路却不同。由于数量关系的多样性和叙述方式的不同,用算术方法解答应用题,时常要用逆向思考,列式比较困难,解法的变化也比较多。用列方程的方法解答应用题,由于引进了字母表示未知数,可以使未知数直接参与运算,使题目中的数量关系更加清楚,把未知数当成已知数来用,使我们很容易理

  • 标签:
  • 简介:

  • 标签:
  • 简介:方程思想是一种重要的数学思想方法,是指在求解数学问题时,从题中的已知量和未知量之间的数量关系入手,找出相等关系,运用数学符号语言将相等关系转化为方程(或方程组),再通过解方程(组)解决问题.其应用非常广泛,下面我们通过几个例题来体会方程思想的巨大威力.

  • 标签: 方程思想 数学思想方法 数学符号语言 相等关系 方程(组) 数学问题
  • 简介:摘要:自古至今,人们对于宇宙的探索,前仆后继,不停脚步,不知耗费了多少人的心血,陨损了多少人的躯体?至今仍然迷途奔波、孜孜不倦。为了益于芸芸,此处对宇宙作一数学描述,建立一方程,以期有所依也、有所范也。虽是贻笑天下,愚亦乐乎。何以自诮自娱?——凡人之心、莫不如是,螃蟹首食、以为责也。

  • 标签: 宇宙
  • 简介:同学们,我们已经了解了许多有关方程的历史、故事.显然,如果我们把遇到的实际问题转化为方程的问题,那么只要求出方程的解,就能够解释、验证实际问题.怎样求出一元一次方程的解呢?同学们一定会说:不就是将一元一次方程最终变成"x=a"(a为常数)的形式嘛!非常正确,这样就好像"把x变成了‘孤家寡人’".下面,让我们一起来了解与之相关的历史故事吧.方程,是代数学重要的研究对象之一.

  • 标签: 一元一次方程 史话 历史故事 问题转化 代数学 同学
  • 简介:第一个步骤:做1个决定.决定要成功!

  • 标签: 成功 方程
  • 简介:

  • 标签:
  • 简介:在处理一类椭圆C:x2/a2+y2/b2=1(a〉0,b〉0,a≠b)与直线l:y=kx+h的有关问题时,若能根据题意令x/a=x',y/b=y',即把椭圆C、直线l分别变成圆C':

  • 标签: 椭圆方程 巧用 直线 题意
  • 简介:摘 要 : 《极坐标与参数方程》是全国卷高考选考的重要内容,大部分学校都选这部分内容,而且《极坐标与参数方程》对必修中的圆锥曲线解题有很大的帮助。 极坐标方程和参数方程的综合问题一直是高考命题的热点,主要考查等价转换思想,代数式变形能力,逻辑思维推理能力,本文主要介绍的是将参数方程转化普通方程的高考常用的四种方法。

  • 标签:
  • 简介:方程思想是从分析问题的数量关系入手,抓住等量关系,运用数学符号、语言讲相等关系转化为方程,它是中学阶段最基本,也是最重要的数学思想之一.可是有的时候一些题目披着别的"知识点"的外衣,实则却是一道代数题,而且利用方程思想反而能更快的解决问题,接下来就以几道例题为例.例1某农场主有一块均匀植草的三角形草地,他把草地分成东南西北四块,经过统计得出,在西边草地上可牧5只羊,南边草地可牧8只羊,东边草地可牧8只羊,问在北边草地上可牧几只羊?

  • 标签: 方程思想 巧用 数量关系 等量关系 数学符号 相等关系
  • 简介:

  • 标签:
  • 简介:一元一次方程和二元一次方程组是学习数学的基础,也是七年级数学的重点.解含字母系数的一次方程(组)、不定方程的求值及列一次方程(组)解应用题是数学竞赛命题的重点.下面请庞老师通过典型例题对有关内容加以阐述.

  • 标签: 方程组 谈谈方程
  • 简介:现在的学生,特别是中职学生,认为数学太难太枯燥而无学习数学的兴趣,而兴趣是最好的老师,那么怎样培养学生学习数学的兴趣呢?我们曾经使用过多媒体教数学,但效果甚微,甚至更让学生有学习数学如看电影、摸洋风的不好印象,达不到分析、推理、发散思维的有趣意境,激发不起学习数学的爱国豪情,也难提高学习数学的真正兴趣,因而学习起来也无强大动力.

  • 标签: 学习数学 中职学生 赏析 方程 发散思维 多媒体