简介:摘要:目标检测算法在不断更新迭代,从20世纪90年代至今,目标检测领域已经发生了翻天覆地的变化。本文简要梳理了目标检测算法的发展历程,重点对YOLOv1和YOLOv3两代算法进行了详细讨论,同时还探讨了YOLO算法在农业、工业、医学和遥感监测等领域的广泛应用,并展望了其未来的发展潜力。
简介:红外图像中弱小目标的检测是实现红外搜索跟踪、红外侦查预警等红外图像处理的核心技术之一。当目标距离成像系统较远,目标呈现出面积小、信噪比低等特点,增加了对其检测的难度。为了准确、快速地实现不同红外背景下的弱小目标检测,提出了一种基于多层数据融合的红外图像弱小目标单帧检测算法。
简介:介绍和分析了在当前成像跟踪系统中常用的几种点目标滤波检测算法。为了满足图像处理实时性要求,设计了一套针对图像滤波算法的FPGA硬件实现结构。该结构具有FPGA高速并行计算能力,能在信号读出的过程中实时地完成多种滤波处理。成像实验证明该方案切实可行,具有良好的实时滤波效果。
简介:摘要:深度学习已经在目标检测领域取得了显著的进展,通过自动学习特征表示和端到端的训练方式,提高了目标检测的准确性和效率。本文对基于深度学习的目标检测算法进行了综述,包括单阶段和两阶段检测器。单阶段检测器如YOLO和SSD直接在图像上进行密集预测,具有实时性和高效性,但可能存在定位不准确性。两阶段检测器如R-CNN系列通过候选区域生成和分类/定位两个阶段实现更精确的定位,但计算资源消耗较大。选择适合任务需求的检测器取决于实时性、准确性和定位要求。未来,深度学习目标检测算法将进一步发展,结合单阶段和两阶段的优势,以提高性能和效果。
简介:摘要:近年来,Transformer模型因其在自然语言处理领域的卓越表现而备受关注。随着深度学习的不断发展,Transformer逐渐被引入计算机视觉领域,并在目标检测任务中展现出强大的潜力。本综述系统地回顾了基于Transformer的目标检测方法,首先回顾了目标检测的传统方法和基于深度学习的目标检测技术,接着介绍了Transformer的基础架构以及自注意力的原理,然后重点讲解了近年来典型的基于Transformer的目标检测方法,包括DETR(Detection Transformer)及类DETR算法,详细阐述了它们的架构和优化方法,并总结了在不同数据集上的性能表现。通过本综述,我们希望为研究人员提供一个全面的参考,帮助他们更好地理解和应用基于Transformer的目标检测方法,并推动该领域的进一步发展。
简介:摘要:近年来,Transformer模型因其在自然语言处理领域的卓越表现而备受关注。随着深度学习的不断发展,Transformer逐渐被引入计算机视觉领域,并在目标检测任务中展现出强大的潜力。本综述系统地回顾了基于Transformer的目标检测方法,首先回顾了目标检测的传统方法和基于深度学习的目标检测技术,接着介绍了Transformer的基础架构以及自注意力的原理,然后重点讲解了近年来典型的基于Transformer的目标检测方法,包括DETR(Detection Transformer)及类DETR算法,详细阐述了它们的架构和优化方法,并总结了在不同数据集上的性能表现。通过本综述,我们希望为研究人员提供一个全面的参考,帮助他们更好地理解和应用基于Transformer的目标检测方法,并推动该领域的进一步发展。
简介:摘要:近年来,Transformer模型因其在自然语言处理领域的卓越表现而备受关注。随着深度学习的不断发展,Transformer逐渐被引入计算机视觉领域,并在目标检测任务中展现出强大的潜力。本综述系统地回顾了基于Transformer的目标检测方法,首先回顾了目标检测的传统方法和基于深度学习的目标检测技术,接着介绍了Transformer的基础架构以及自注意力的原理,然后重点讲解了近年来典型的基于Transformer的目标检测方法,包括DETR(Detection Transformer)及类DETR算法,详细阐述了它们的架构和优化方法,并总结了在不同数据集上的性能表现。通过本综述,我们希望为研究人员提供一个全面的参考,帮助他们更好地理解和应用基于Transformer的目标检测方法,并推动该领域的进一步发展。
简介:摘要:近年来,Transformer模型因其在自然语言处理领域的卓越表现而备受关注。随着深度学习的不断发展,Transformer逐渐被引入计算机视觉领域,并在目标检测任务中展现出强大的潜力。本综述系统地回顾了基于Transformer的目标检测方法,首先回顾了目标检测的传统方法和基于深度学习的目标检测技术,接着介绍了Transformer的基础架构以及自注意力的原理,然后重点讲解了近年来典型的基于Transformer的目标检测方法,包括DETR(Detection Transformer)及类DETR算法,详细阐述了它们的架构和优化方法,并总结了在不同数据集上的性能表现。通过本综述,我们希望为研究人员提供一个全面的参考,帮助他们更好地理解和应用基于Transformer的目标检测方法,并推动该领域的进一步发展。
简介:摘要:随着深度学习的不断进步,已经将应用延伸到光电跟踪设备,优质的检测跟踪算法决定光电跟踪设备的工作效率。本文提出一种改进YOLOv4的检测跟踪算法,结合空洞卷积对其网络结构进行改进,加入空洞空间金字塔池化模型,以此增大感受野,聚合多尺度上下文信息。然后,通过 K-means聚类方法生成更适合目标检测的初始候选框。其次,提出一种对象选择器,用来选择检测和跟踪轨迹中的最优候选框;最后,将最优候选框和跟踪轨
简介:摘要:目标检测是机器视觉领域和计算机视觉领域的一项重要课题,其在人脸识别和视频目标识别以及无人导航领域扮演着重要的作用,目标识别的算法多种多样,传统的目标检测算法有很多,比如基于尺度不变性特征和基于方向梯度直方图特征的算法,随着近些年大数据和计算机技术的发展,深度学习算法在众多算法中脱颖而出,目前最为先进且识别率较为准确的算法正是基于深度神经网络的目标检测手段,本文按照时间发展的先后顺序依次介绍了LeNet-5模型、AlexNet模型以及VGG模型,并对未来深度神经网络模型的发展方向从数据集和计算机性能角度进行进一步研究。
简介:摘 要 : 针对于当今监控系统大多只起拍摄作用而无智能监控手段的问题,提出了基于目标检测算法的智能监控系统。在运用目标检测算法与人脸检测算法的基础之上,利用这些算法实现了能够检测移动目标并进行图像之中人脸的检测与提取,从而当陌生人进入时系统能够精确识别。实现了智能化监控,极大提升了监控的准确性与安全性。 关键词:目标检测、人脸检测、 智能监控 引言 智能视频监控系统无需监控人员持续地盯着屏幕,减轻了工作人员的负担,并具有主动性和实时性的优势。智能视频监控系统的主要职责是利用计算机视觉技术从视频图像中检测、跟踪、识别人脸,并对该主体的行为进行理解。 一、系统设计原理 该系统在原视频系统的监控功能基础上,还增加了以下功能: 包括固定传感器布控预警、华为云平台 Atlas200DK智能摄像头、数据处理系统、可视化一体平台。其中可视化一体平台包括人员属性检测采集系统和视频结构化回溯系统实现人脸信息采集的智能化分析及预警。 ( 1)视频监控系统具有人脸识别能力。要求系统能够自动捕捉出入监控范围的人员脸部图像与数据库信息进行比对 , 并自动识别判断是否为可疑人员上传至数据库处理系统。数据处理系统通过算法模型进行人脸识别并与云数据库中的信息比对,若信息不匹配,则智能启动无人机,无人机将进行目标追踪。 ( 2)系统会将收集到的信息上传至可视化一体平台。固定摄像头拍摄图像信息上传到数据处理系统,数据处理系统通过数据处理算法和可视化数据分析上传至可视化一体平台。无人机拍摄可疑人员后自行处理并上传至可视化一体平台呈现给用户。 二、算法分析 2.1目标检测算法( YOLO v3) YOLO v3采用帧间差分法进行图像提取,且采用多个 scale融合的方式做预测。原来的 YOLO v2有一个层叫: passthrough layer,假设最后提取的 feature map的 size是 13*13,那么这个层的作用就是将前面一层的 26*26的 feature map和本层的 13*13的 feature map进行连接,有点像 ResNet。当时这么操作也是为了加强 YOLO算法对小目标检测的精确度。这个思想在 YOLO v3中得到了进一步加强,在 YOLO v3中采用类似 FPN的 upsample和融合做法(最后融合了 3个 scale,其他两个 scale的大小分别是 26*26和 52*52),在多个 scale的 feature map上做检测,对于小目标的检测效果提升还是比较明显的。 YOLO v3中对前面两层得到的 feature map进行上采样 2倍,将更之前得到的 feature map与经过上采样得到的 feature map进行连接,这种方法可以让我们获得上采样层的语义信息以及更之前层的细粒度信息,将合并得到的 feature map经过几个卷积层处理最终得到一个之前层两倍大小的张量。 图 1 帧间差分法算法流程图
2.2人脸检测算法 (MTCNN) 所谓人脸检测,就是给定一张图像,找到其中是否存在一个或多个人脸,并返回人脸置信度和人脸框位置。它是从待识别图像上获取有用信息的第一步,是实现实时、高精度人脸识别系统的前提和基础。网络实现人脸检测(人脸分类、边框回归)和关键点定位分为三个阶段: 第一阶段:由 P-Net获得了人脸区域的候选窗口和边界框的回归向量,并用该边界框做回归,对候选窗口进行校准,然后通过非极大值抑制( NMS)来合并高度重叠的候选框 第二阶段: P-Net得出的候选框作为输入,输入到 R-Net,网络最后选用全连接的方式进行训练,利用边界框向量微调候选窗体,再利用 NMS去除重叠窗体。 第三阶段:使用更加强大的 CNN( O-Net),网络结构比 R-Net多一层卷积,功能与 R-Net作用一样,只是在去除重叠候选窗口的同时,显示五个人脸关键点定位。 ONet 是网络的最后输出。 图 2 人脸检测阶段流程图 三、系统结构设计 ( 1)数据输入层。本部分通过采集或导入已有人脸数据库,为系统提供待测人脸数据及人脸比对基础库。涵盖一切提供数据源的前端及数据库。 ( 2)算法引擎层。人脸识别平台系统是人脸识别系统的核心 ,主要包括人脸数据的建模,比对分析和存储。 ( 3) 平台服务层。平台服务层向下对接算法引擎,向上提供业务数据接口。主要包括接受客户提出的任务,调用相关底层算法引擎,对算法层反馈的结果进行分析,并提供相关的业务服务。 ( 4)大数据业务层。大数据业务层主要负责数据仓储及数据检索服务。数据仓储及数据检索服务。数据仓储指将系统中产生的人脸图片、人脸特征数据、告警推送信息,包括目标数据库的相关数据进行结构化存储;数据检索服务指与平台服务对接,提供结构化的快速检索,与安防业务相结合,实现对数据时间、空间信息的充分利用,且平台业务功能可在庞大的数据库中快速反馈检索结果。 固定摄像头拍摄图像上传至数据处理系统,数据处理系统通过目标检测算法、人脸检测算法、人脸识别算法将图像中的人脸识别出来并与数据库中的信息进行比对,并根据比对结果决定是否报警,同时将处理后的数据上传至可视化一体平台。更为重要的一点,可以对监拍对象进行数据提取分析,形成对象分析报告,高效准确地将其信息提供给客户。 图 3 系统结构流程图 小结 随着科学技术的不断提高,人脸实时识别监控系统在使用时,依据人面像本身所固有的生理特征 ,利用目标检测算法、人脸检测算法和人脸识别算法来达到身份验证和识别的目的。 参考文献 [1]严杰支持人脸检测的智能视频监控系统的设计与实现 [D].重庆大学 . [2]李苗在,谷海红 .人脸识别研究综述 [J].电脑知识与技术 :学术交流 ,2011,07(8X):5992-5994.简介:摘要:遥感图像目标检测在城市规划、资源调查和灾害监测等领域应用广泛,基于遥感图像的目标检测具有重要研究意义。遥感技术为人们快速、全面了解地表覆盖变化提供了技术支持,在高分辨率遥感技术不断发展的大背景下,大量高品质遥感图像的采集越来越方便。遥感图像是利用遥感技术生成的远距离图像,可以对目标进行有效的处理。目标检测是遥感图像处理的基础任务之一,通过对遥感图像的分析可以分辨出水体、植被等目标,同时遥感影像可以识别更小的目标,如具体的树木、人、交通标志、足球场标志线等等,因此遥感图像目标检测已经成为当前研究的热点问题。遥感设备拍摄图像时由于设备距离目标较远,包含的地面范围大,受到分辨率的限制,待检测目标可能以微小形式显示在遥感图像中,这些检测目标具有尺度小、特征弱等特点,为图像目标的检测工作带来较大难度。