简介:教学设计教学目标(一)知识与技能1.理解互逆命题、原命题、逆命题的有关概念及关系;2.掌握勾股定理的逆定理的探究方法;3.掌握勾股定理的逆定理并会运用。
简介:1.勾股定理直角三角形中,两直角边的平方和等于斜边的平方.
简介:
简介:北师大版初中义务教育数学教科书(第九册)用构造法证明了勾股定理的逆定理,方法经典、不失巧妙(文[1]作了详细叙述),但所构造的新图形显得有些突如其来,给学生的感觉是“太难想到了”;文[1]用反证法来证明,也非常简洁,但反证法需要较强的逻辑思维能力,这对初中阶段的学生来说是较难适应的,更何况应用反证法的前提是“正难则反”.
简介:本文梳理了椭圆的几个经典的等价定义,并研究了椭圆法线定理的逆命题,给出了肯定回答,这个问题与几何光学密切相关.
简介:勾股定理是初中几何的一个重要定理,它主要是用于求直角三角形的边长;而其逆定理则是用于判定一个三角形中的某一个角是直角.由此看来,勾股定理与其逆定理在应用上有着很大的不同,然而却有不少的几何问题必须应用两者“联手”来解决,现略举几例说明.
简介:勾股定理及其逆定理是平面几何中极为重要的定理.其应用十分广泛.为帮助同学们提高综合运用勾股定理及其逆定理解决问题的能力,现举例说明。
简介:1.如图,在下列横线上填上适当的值:
简介:甲:听说你对勾股定理很有研究,是吗?乙:研究谈不上,多少知道一点罢了.甲:都知道些什么呢?.乙:知道勾股定理的证明有几百种,而且大多数是采用面积证法.听说连美国的一位总统也曾凑过热闹,找到了一种很简便的证法.
简介:勾股定理及其逆定理是几何中的重要定理,应用极其广泛,历年来都是各地中考命题的热点.了解一下往年中考怎么考,同学们学习时就会胸有成竹了.
简介:本文讨论积分中值定理是否具有逆定理,即函数f(x)在[a,b]上连续,对(a,b)内的任意值c,是否存在一个区间[α,β][a,b],使∫αβf(x)dx=f(c)(β-α)。文中对值c分三种情况给出相应的结论.
简介:本刊1985年4期《刊登的托勒密定理的证明及其应用》一文中,用贝利切那德定理推出了托勒密定理的逆定理,证明过程冗繁,不易为读者接受,这里给出一种简单证法。已知:在四边形ABCD中AB·CD+BC·AD=AC·BD,
简介:“如果一个三角形的三条边长分别为a、b、c,且有a^2+b^2=c^2。那么这个三角形是直角三角形”这就是勾股定理的逆定理,它是初中几何中极其重要的一个定理,有着广泛的应用,下面举例说明。
简介:联合应用勾股定理及其逆定理,可以解决很多几何问题,其一般步骤是:先应用勾股定理的逆定理证明已知图形(或适当添加辅助线后的图形)中的某个三角形为直角三角形,然后再应用勾股定理解决问题。
简介:内容摘要:勾股定理是华师大版八年级上册第14章的内容,它是在我们已经初步掌握直角三角形定义及有关性质的基础上进行学习的,它是我国古代数学的一项伟大成就,是三角形三边关系之后用来描述特殊三角形三边关系的又一个重要的结论.勾股定理揭示了直角三角形三边长的内在联系,反映了三边之间特殊的平方关系,它的逆定理为我们提供了三角形是否是直角三角形的依据,也是判定两条直线是否互相垂直的重要方法.它为我们利用代数方法来研究几何图形提供了新的途径和方法,因此应用十分广泛.
简介:为提高综合运用勾股定理及其逆定理解计算题和证明题的能力,现举数例说明如下:
简介: 勾股定理揭示了直角三角形三边之间的关系,其逆定理是判定直角三角形的一种重要方法.综合应用勾股定理及其逆定理,可以解决很多几何问题.其一般步骤是:先应用勾股定理的逆定理证明已知图形(或适当添加辅助线后的图形)中的某个三角形为直角三角形,然后再应用勾股定理解决问题.……
简介:如果一个三角形的三边长满足两边的平方和等于第三边的平方.那么这个三角形是直角三角形.这就是勾股定理的逆定理.它在数学中的应用非常广泛.下面举例说明勾股定理的逆定理在解题中的应用.
简介:三垂线定理及其逆定理是立体几何中的2个重要定理,在解决某些立体几何问题时,具有较大的优越性,尤其在处理垂直问题的时候.
勾股定理的逆定理
勾股定理及其逆定理
逆命题与逆定理检测题
巧证勾股定理逆定理
椭圆法线定理的逆定理
勾股定理及其逆定理“联手”解题
勾股定理及其逆定理的应用
勾股定理及其逆定理专题训练
勾股定理及其逆定理的陷阱
积分中值定理逆定理的研究
托勒密定理逆定理的简单证法
勾股定理逆定理的五种应用
勾股定理与其逆定理的联合应用
勾股定理及逆定理易错辨析
勾股定理及其逆定理的综合运用
勾股定理及其逆定理的综合应用
勾股定理的逆定理应用举例
三垂线定理及其逆定理的题根