简介:如果一个代数式中的各字母按照某种次序互相代换,所得的代数式仍和原来的代数式相等,那么原来的代数式叫做这些字母的轮换对称式.
简介:一个含三个变数字母A、B、C的不等式,若将A、B、C顺次换成B、C、A,所得不等式与原不等式完全一样,则称此不等式为三元轮换对称不等式。如:a3+b3+c3≥3abc;aabbcc≥ab+c/2bc+a/2ca+b/2。一、用减元法证轮换不等式——原不等式去掉某个字母,先证二元不等式;类似地易证另外两个二元不等式,综合三式即得。
简介:普通高中课程标准实验教科书《数学选修4—5·A版·不等式选讲》(人民教育出版社2007年第2版)(下简称《不等式选讲》)第22—23页的例3及第23页的第4题(其解答见与《不等式选讲》配套使用的《教师教学用书》(下简称《教师用书》)第24页)是:
简介:一个分式中,若假设含有字母a、b、c、d,如果用a替换b,b替换c,c替换d,d替换a,之后所得的分式与原分式一样,这样的分式一般就叫做轮换对称分式.轮换对称分式的求值问题一直是各类竞赛的热点之一.由于它的解法灵活,技巧性强.令不少同学望而生畏.现介绍解这类问题的几种常用方法.
简介:
简介:在现实世界中,相等是相对的,不等是绝对的.不等芙系是现实生活中最普遍的数址火系,不等式是刻画不等关系的一种重要数学模型.不等式与数、式、方程、函数、导数等知识都有着天然紧密的联系,
简介:<正>考点解读不等式的性质及应用点击考点一不等式性质有关的问题不等式的基本性质是解不等式与证明不等式的理论根据,运用不等式的性质要切实注意不等式的性质的前提条件,防止条件的强化或弱化.
简介:<正>"村口剃头的王师傅死了,他徒弟李狗蛋干的。"有一天他这样问我,"你能想到什么?""王师傅剪头发实在太丑,不能忍?"彼时我正捏着笔想在空白的数学卷子上留下几笔痕迹,这实在不是我的长项,但是班主任给我下了最后通牒,如果下次月考还不能超过班级平均分就给我请家长,我预想了一下这事真实发生时的情形就连带手中的笔抖了三抖,转眼又看了看试题,题目上的立体几何我左看右看还是个平面,终于明白了欲哭无泪是怎样的光景。
简介:<正>考点解读不等式这部分知识,渗透在中学数学的各个分支中,有着十分广泛的应用.它始终贯串在整个中学数学学习之中.诸如集合问题,方程(组)的解的讨论,函数单调性的研究,函数定义域的确定,三角、数列、复数、立体几何、解析几何中的最大值、
简介:<正>考点解读不等式的性质与定理点击考点一均值不等式二元均值不等式不但用来求函数的最值,而且也是综合法证明不等式的重要理论依据.注意其延
简介:疑难解析:例1:(1)已知x∈R,比较x^6+1与x^4+x^2的大小。评述:1.作差比较两式大小的一般步骤是:①作差(有时需要转化才可作差),②变形(进行因式分解、配方、化为平方式等),有时还需要根据字母的取值范围讨论差的符号,③判断差的符号。
简介:一、本章知识结构图二、本章基本知识点1.主要概念:
简介:对于一些和式、积式的分式不等式证明题,很多情况下都无法从整体下手,往往需要先考虑局部式子的特征,想办法去估计局部的性质,导出一些局部不等式,最后再结合这些局部不等式,就会“山穷水尽疑无路,柳暗花明又一村”,很完美地达到证题的目的.
简介:一、本章知识结构图本章重点以不等式(组)为工具分析问题、解决问题
简介:定理已知AABC的外接圆半径与内切圆半径分别为R,r,三个内角分别为A,B,C,
对轮换对称不等式取等条件的质疑
三元轮换对称不等式的证明方法
谈谈对称式不等式的证明
轮换对称分式的求值方法
轮换对称式的求解策略
不等式问题:均值不等式和柯西不等式的运用
不等式
《不等式与不等式组》复习指导
不等式与不等式组专题测试
巧用“局部不等式”证明分式不等式
一个优美的半对称不等式