简介:古人云“以史为鉴”,说的是吸取历史的经验教训,对未来的情况做出预判或者改变。生活中,亦是存在相似的利用历史数据对未来变化趋势进行预测分析的时间序列问题。本文就时间序列一类的问题进行研究,探讨如何更好地根据历史统计数据,对未来的变化趋势进行预测分析。本文基于神经网络,以气象观测历史数据作为研究的对象,建立了气温变化时序预测模型。本模型利用大数据相关技术对数据进行特征处理,通过深度神经网络,学习特征数据和标签数据之间复杂的非线性关系,从而实现对气温变化的趋势预测。实验结果表明,相较其他模型,本文的模型能够更好地进行时序预测,同时也证明了神经网络用于气象预测的可行性。
简介:摘要:目标轨迹信息表征目标的运动特征,通过预测轨迹数据可以对目标运动趋势进行预判,并实现对目标的定位分析。为此,本文利用LSTM神经网络对雷达采集目标轨迹进行预测,通过MATLAB编程对预测的轨迹数据进行验证。
简介:摘 要 航材保障面临着库存积压、库存结构不合理等问题,严重影响了航材保障质量效益。其中原因之一,就是航材消耗规律把握不够准确,在一定程度上影响了航材订货决策的科学性。因此,本文将尝试根据航材的消耗规律运用BP神经网络预测方法建立模型,并通过实例计算预测,验证所建立模型的准确度,对预测结果进行分析评价航材。
简介:摘要网络性能预测是指以现有理论等为基础,来构造具有预测性的模型以实现对未来业务数据的推测和估计。本文按照电力营销系统的特殊架构,建立了基于神经网络的电力营销系统网络性能预测模型,构建了电力营销系统的网络特征信息集,并设定了网络性能预测的信息过滤规则。此外,基于构建的电力营销系统网络预测模型,进一步研发了电力营销系统流量过滤模块。通过OPNET网络仿真结果显示,基于神经网络的电力营销系统网络性能预测模型能够有效降低网络阻塞,提高网络使用效率。