学科分类
/ 25
500 个结果
  • 简介:摘要  由于矩阵的初等变换和初等矩阵都有“初等”二字,所以非常容易将二者混为一谈.此文的目的在于解释这两个概念的区别,同时也介绍它们的关系.在对矩阵进行运算时,我们可对其进行类似于行列式的行(列)变换或数乘运算等,即矩阵的初等变换.为了搞清楚变换后的矩阵所具有的特性,也为了说明矩阵的初等变换的意义,我们引入初等矩阵的概念.其实初等矩阵就是单位矩阵矩阵的初等变换后所得的矩阵.具体内容见下文简述.

  • 标签:   矩阵的初等变换 初等矩阵 单位矩阵 逆矩阵
  • 简介:给出了矩阵体积法的原理和方法,并使用矩阵体积法研究了水下差分GPS定位中设计矩阵的态性,导出了星形空间网中设计矩阵体积与观测向量高度角参数的函数关系式,为研究星形空间网图形强度提供了数学模型。

  • 标签: 全球定位系统 水下差分GPS 矩阵体积 矩阵体积法
  • 简介:讨论了n(n≥2)阶方阵A与其伴随矩阵A^*的特征值之间的关系,利用A的特征值λ0及其代数余子式Aij给出了A^*的特征值的表达式.

  • 标签: N阶方阵 伴随矩阵 特征值 代数余子式
  • 简介:将文[1,4]中定义广义正定矩阵的概念再作推广,并讨论各种不同定义下的广义正定矩阵间的包含关系,给出M-矩阵等价的四种新定义.

  • 标签: 广义正定矩阵 M-矩阵 等价性
  • 简介:给出基本初等矩阵的定义,得出任何方阵都可分解为有限个基本初等矩阵的乘积的结论.

  • 标签: 基本初等矩阵 矩阵 分解
  • 简介:系统内部要素之间的相互联系由可达矩阵表示,骨架矩阵是它的最简化表示。在相似关系下.一个可达矩阵的,骨架矩阵是唯一的(即所有骨架矩阵相似且具有相同个数的"1"元素)。

  • 标签: P矩阵 步长
  • 简介:文讨论了循环矩阵的对角化问题。本文讨论推广了的一类循环矩阵——广义循环矩阵。首先确定了复数域上由U确定的一类广义循环矩阵所组成的空间的最大维数;然后给出了复广义循环矩阵与对角阵西相似的充要条件。

  • 标签: 广义循环矩阵 基本广义循环矩阵 特征值 特征向量 酉相似
  • 简介:<正>本文对量子力学中算符的矩阵表示法及算符用矩阵表示时,变换矩阵的求法作了初步归纳。对几种常见算符的矩阵表示和表象变换作了详细讨论。1、力学量算符的矩阵表示将算符表示成矩阵形式一般教材上多给原理上的讨论,少有具体方法。总结两点如下:算符用矩阵表示时,该矩阵一般是方阵,当算符处在包含其自身在内的表象中时,该矩

  • 标签: 矩阵表示 算符 变换矩阵 量子力学 本征函数 本征值方程
  • 简介:在本文中,我们证明了对一个反Krylov矩阵作QR分解后,利用得到的正交矩阵可以将一个具有互异特征值的对称矩阵转化为一个半可分矩阵的形式,这个结果表明了反Krylov矩阵与半可分矩阵之间的联系.另外,我们还证明了这类对称半可分矩阵在QR达代下矩阵结构保持不变性.

  • 标签: 反Krylov矩阵 半可分矩阵 特征值 QR分解
  • 简介:讨论了矩阵的秩分解,对几个有关矩阵秩的结论给出与一般教材中不同的证明,同时给出不计算两个矩阵的乘积直接求乘积的秩的方法。

  • 标签: 矩阵 秩分解
  • 简介:Inthispaper,theconceptofthes-doublydiagonallydominantmatricesisintroducedandthepropertiesofthesematricesarediscussed.Withthepropertiesofthes-doublydiagonallydominantmatricesandthepropertiesofcomparisonmatrices,someequivalentconditionsforH-matricesarepresented.TheseconditionsgeneralizeandimproveexistingresultsabouttheequivalentconditionsforH-matrices.Applicationsandexamplesusingthesenewequivalentconditionsarealsopresented,andanewinclusionregionofk-multipleeigenvaluesofmatricesisobtained.

  • 标签: H-矩阵 S-双对角占优矩阵 余角 高斯变换
  • 简介:讨论了体上矩阵具有固定秩的(1)-逆矩阵的性质,并类似得到体上矩阵具有固定秩(2)-逆矩阵的几个结果.

  • 标签: 矩阵 (1)-逆 (2)-逆
  • 简介:在高等代数中矩阵是研究问题很重要的工具,在讨论矩阵的乘法运算时给出了对合矩阵的定义,但对其性质研究很少,对合矩阵和反对合矩阵作为特殊矩阵无论在矩阵理论方面,还是在实际应用方面都有重要的意义.我们在研究矩阵及学习有关数学知识时,经常要讨论这两种特殊矩阵的性质,本文先给出对合矩阵和反对合矩阵的定义,然后讨论了它们的若干性质.

  • 标签: 对合矩阵 反对合矩阵 性质