简介:采用气氛烧结技术制备NiFe2O4-xNiO复合陶瓷材料(x为复合陶瓷中NiO的质量分数,%。x=0、5、10、17、25),并以该材料作阳极进行960℃的铝电解实验。分析烧结体的显微结构和物相组成以及电解试样的表层形貌与成分,研究NiO的添加对NiFe2O4陶瓷烧结性能和电解腐蚀性能的影响,并对该材料的烧结机制和熔盐腐蚀行为进行探讨。结果表明:氮气气氛下1300℃烧结的NiFe2O4-NiO复合陶瓷存在NiO和NiFe2O4两种物相,NiO相含量高于理论值;NiFe2O4陶瓷的相对密度为98.54%,添加NiO后复合陶瓷材料的相对密度有所下降,但仍保持在95%以上;电解过程中阳极表面形成不含NiO相的致密保护层,阻止电解质熔盐的渗透;保护层厚50~80μm,为含Al的尖晶石NiFe2O4相;随着NiO含量增加,阳极表面的致密层变得越发不平整。
简介:以不同纤维体积分数(21%、26%、32%)、不同布毡质量比(3:1,2:1,1:1)的针刺整体毡为预制体,采用化学气相渗透法(Chemicalvaporinfiltration,CVI)制备平板炭/炭(C/C)复合材料,研究预制体结构对CVI致密化过程的影响。结果表明:随纤维体积分数增加,整体毡的增密速率及最终密度都逐渐减小;布毡比对增密速率及最终密度影响很小。材料网胎中热解炭圆壳厚度沿材料厚度方向呈内部小、两侧大的对称分布;增加纤维体积分数或增加布毡比,材料内部的热解炭增厚程度随之减小。纤维体积分数为21%的预制体最适宜采用CVI工艺进行增密,增密80h密度达到1.69g/cm3,热解炭生长均匀。
简介:利用高频辅助激光熔覆技术在镍基合金上制备Al2O3-13%TiO2(质量分数)陶瓷涂层。采用SEM、XRD和EDS等方法分析陶瓷涂层的微观结构和陶瓷层与粘结层之间的结合界面。结果表明:陶瓷层出现了完全熔化区和液相烧结区双层结构,其中,完全熔化区颗粒充分烧结长大,而液相烧结区则出现了三维网状结构,该三维网状结构由熔化的TiO2相包裹Al2O3颗粒形成。通过激光熔覆作用下的粉末熔化和扁平化行为解释双层结构形成机理。同时,在陶瓷层与粘结层的结合界面上发现具有尖晶石结构的NiAl2O4和针状结构的Cr2O3,证明在激光熔覆过程中发生的化学反应可以有效增加陶瓷层与粘结层的结合强度。