简介:摘要不同抑郁症患者的最优治疗方案一般需通过长期、低效率的试错过程来逐步确定。为实现抑郁症的精准治疗,有必要通过特异性生物标志物来选择有效的治疗方法。深度学习是机器学习的一个分支,该技术能处理大量高维、复杂的数据,适用于自动提取和学习临床、基因组学和神经影像数据的特征。近年来,研究人员正在使用深度学习技术开发抑郁症治疗反应的预测模型,有利于指导临床医生为患者选择最佳治疗方案以及在全球范围内推进更为高效的个体化精准医疗方案。本文从人口学、临床症状数据、基因组学数据和功能磁共振成像数据三个方面,对深度学习预测抑郁症疗效方面的相关研究进行综述,并对未来的深度学习研究方向尤其是多组学数据结合深度学习的应用进行展望。
简介:摘要:电力负荷预测在电力系统规划和运行中具有重要作用。为了提高预测精度,本研究提出了一种基于深度学习的电力负荷预测模型。首先,收集并预处理了历史电力负荷数据及相关气象数据。其次,构建了包含长短期记忆网络(LSTM)和卷积神经网络(CNN)的混合模型,通过特征提取和时间序列分析相结合的方法来进行负荷预测。模型训练过程中,采用了交叉验证和超参数优化技术,以提高模型的泛化能力和稳定性。实验结果表明,相比传统预测方法,本研究所提出的深度学习模型在预测精度和鲁棒性方面均有显著提升。该研究为电力负荷预测提供了一种有效的方法,具有广泛的应用前景。
简介:摘要:无线信道预测在现代通信系统中具有重要意义,尤其是在快速发展的5G和即将到来的6G时代。传统的无线信道预测方法主要依赖于数学模型和统计方法,尽管这些方法在一定程度上取得了成功,但在面对复杂多变的无线环境时,往往显得力不从心。近年来,随着深度学习技术的迅速发展,基于深度学习的无线信道预测方法开始受到广泛关注。这些方法通过学习无线信道的历史数据,能够更准确地捕捉信道的时变特性和空间相关性,从而提高预测精度。
简介:摘要:本文介绍了一种基于深度学习的电力负荷预测模型及其应用。电力负荷预测在电力系统调度和能源规划中具有重要意义。传统的电力负荷预测方法存在着精度不高和复杂度较高的问题。为了解决这些问题,本文提出了一种基于深度学习的模型。该模型使用长短期记忆(LSTM)网络来捕捉负荷数据中的时序依赖性,并通过适当的训练和调整来提高预测精度。通过实验验证,该模型在电力负荷预测中表现出了较高的准确性和可靠性。此外,本文还介绍了该模型在电力系统调度、能源规划和市场交易等领域的应用。这种基于深度学习的电力负荷预测模型具有广阔的应用前景,可以为电力行业提供有效的决策支持。
简介:摘要:本文专注于基于深度学习的故障预测方法,考虑装备状态数据非线性特征明显,结合装备故障特征演化规律以及时序特征,建立了一种基于ARIMA-CNN-LSTM的复杂装备故障预测方法。
简介:摘要目的基于深度学习方法开发创伤出血量分级预测模型,以辅助预测创伤动物出血量。方法基于中国人民解放军总医院构建的战创伤动物实验时效评估数据库中猪枪弹伤实验数据进行回顾性观察性研究。提取研究总体的出血量数据,并按照出血量将其分为0~300 mL组、301~600 mL组、>600 mL组。采用生命体征指标作为预测变量、出血量分级作为结局变量,基于4种传统机器学习和10种深度学习方法开发创伤出血量分级预测模型;采用实验室检验指标作为预测变量、出血量分级作为结局变量,基于上述14种算法开发创伤出血量分级预测模型。通过准确率和受试者工作特征曲线下面积(AUC)对上述两组模型进行效果评价,并将两组中的最优模型混合得到混合模型1;通过遗传算法进行特征选择,并根据最佳特征组合构建混合模型2;最后,将混合模型2部署于动物实验数据库系统中。结果纳入数据库中创伤动物96只,其中0~300 mL组27只,301~600 mL组40只,>600 mL组29只。在基于生命体征指标构建的14种模型中,全卷积网络(FCN)模型为最优模型〔准确率为60.0%,AUC及95%可信区间(95%CI)为0.699(0.671~0.727)〕;在基于实验室检验指标构建的14种模型中,循环神经网络(RNN)模型为最优模型〔准确率为68.9%,AUC(95%CI)为0.845(0.829~0.860)〕。FCN与RNN模型混合后得到混合模型1,即RNN-FCN模型,模型效果得到提升〔准确率为74.2%,AUC(95%CI)为0.847(0.833~0.862)〕;通过遗传算法进行特征选择,根据筛选后的特征组合构建混合模型2,即RNN-FCN*模型,进一步提升了模型效果〔准确率为80.5%,AUC(95%CI)为0.880(0.868~0.893)〕,该模型包含10项指标,分别为平均动脉压(MAP)、血细胞比容(HCT)、血小板计数(PLT)、血乳酸(Lac)、动脉血二氧化碳分压(PaCO2)、二氧化碳总量、血Na+、阴离子隙(AG)、纤维蛋白原(FIB)、国际标准化比值(INR)。最后,将RNN-FCN*模型部署在数据库系统中,实现了对创伤动物出血量的自动、连续、高效、智能、分级预测。结论基于深度学习开发了一种创伤出血量分级预测模型,并部署在信息系统中,实现了对创伤动物出血量的智能分级预测。