学科分类
/ 25
500 个结果
  • 简介:引入指数有界C-的不变及容许空间的概念,获得了指数有界C-的不变及容许空间的特征刻划,其结果包含强连续的相应结果。

  • 标签: 指数有界 C-半群 不变子空间 容许子空间
  • 简介:“本文引入了的民;—伪正规子群的概念,并结合文[1]中n次方及n次方闭的概念和结果得到若干有益的绪论。

  • 标签: n—伪正规子群 n次方群 n次方闭群
  • 简介:证明了含幺Clifford上的Rees矩阵S的所有逆断面都是Q-逆断面,S的所有逆断面互相同构并且S的Q-逆断面是它的完全单子的Q-逆断面的强格.

  • 标签: 含幺Clifford半群 REES矩阵半群 逆断面 强半格
  • 简介:利用拟齐次函数的性质,得到了证明两类拟齐次函数正规型的一种比较初等的方法,更简明的给出了两类拟齐次函数的分类。

  • 标签: 拟齐次函数 半拟齐次函数 正规型
  • 简介:在n次积分及一次积分扰动理论的基础上,探讨了α次积分的扰动性,得到了α次积分的扰动定理.

  • 标签: α次积分半群 生成元 扰动
  • 简介:一个n次积分S(t)如果满足‖S(n)(t)x‖≤‖x‖,At≥0,x∈D(An),我们就称S(t)是一压缩的n次积分,其中A为S(t)的生成元.在本文中,我们完全刻划了n次压缩积分的特征.给出了n次压缩积分的Lumer-Phillips定理.

  • 标签: n次积分半群 压缩性 耗散性
  • 简介:设iAj(1≤j≤)是有界C0的可交换生成元,P(A)=∑|μ|≤2aμAμ(Aμ=A1μ…Anμn)如果P是弱椭圆的且其实部是上有界的,则我们证明P(A)生成一个C0

  • 标签: C0半群 弱椭圆算子 泛函演算
  • 简介:证明了转移函数是l∞的一个空C1上的正的压缩C0,其极小生成元恰好是Markov积分算子的生成元在C1中的部分;Markov积分算子的生成元稠定的充分必要条件是q-矩阵Q一致有界;同时转移函数是Feller-Reuter-Riley的充要条件是Markov积分算子的生成元在c0中的部分产生一个强连续.最后,在序Banach空间给出了增加的压缩积分算子的生成定理.

  • 标签: 参数连续MARKOV链 转移函数 Markov积分算子半群 压缩C0半群 增加积分算子半群 预解正算子
  • 简介:本文采用Dib(1994)引入的模糊空间和模糊的新方法,引入模糊上模糊内理想和普通上模糊内理想导出的模糊内理想的概念,讨论了模糊内理与模糊理想、经典模糊内理想的关系,并给出了两个反例.

  • 标签: 模糊空间 模糊半群 模糊理想 模糊内理想
  • 简介:减弱了Drazin关于完全П-正则的刻划中的条件,简比了Bogdanovic关于完全П-正则的等价刻划的证明,并给出了完全П-正则右逆的一个等价定义。

  • 标签: 正则半群 注记 右逆 等价刻划 逆半群 等价定义
  • 简介:本文主要讨论有限特殊Church-RosserThue系统所表现的么上Green等价的数量性质.证明每种Green等价类都是正则集合,其个数或1或∞且多项式时间内可计算.同时获得一个关于有限特殊Thue系统描述能力的结论.

  • 标签: Church—Rosser Thue系统 么半群Green等价 正则集合