学科分类
/ 25
500 个结果
  • 简介:摘要本文通过对闭环系统微分方程进行研究,求解常系数线性微分方程,验证了P、PI、PID控制是否能消除稳态误差,并指出了系统产生超调时参数的范围,对于参数的整定具有一定的指导意义。由于PID控制算法并没有严格的理论证明,在算法的学习中,容易对其消除稳态误差的原因及调节参数时产生超调的现象产生困惑,本文根据这一问题作出了研究。

  • 标签: PID 控制 常系数线性微分方程 FOPDT 模型
  • 简介:摘 要:考虑一类一阶常微分方程---可分离变量的微分方程的求解,从实际出发,通过数学建模的方式,引导学生求解该方程,提高解决实际问题的能力,培养科研素养.

  • 标签: 微分方程 可分变量的微分方程
  • 简介:变分迭代被用于解时滞微分方程,通过这种方法我们得到了他们的准确解和数值解。一些例子说明了这种方法的有效性,结果显示这种方法对于解时滞微分方程是一种有力的直接的数学方法。

  • 标签: 娈分迭代 严格变分 时滞微分方程
  • 简介:微分方程理论的应用,不断促进着科学应用的发展。本文通过介绍微分方程的基本概念,总结了一些微分方程求解的技巧和方法,最后通过实际事例阐述了解决不同类型微分方程的一些方法。

  • 标签: 微分方程 求解 技巧
  • 作者: 李帅赵堃
  • 学科: 文化科学 > 教育学
  • 创建时间:2011-06-16
  • 出处:《中国校园导刊:教育版》 2011年第6期
  • 机构:【摘要】:微分方程理论的应用,不断促进着科学应用的发展。本文通过介绍微分方程的基本概念,总结了一些微分方程求解的技巧和方法,最后通过实际事例阐述了解决不同类型微分方程的一些方法。
  • 简介:摘要:微分方程来源于实践,是现代科学技术中分析问题和解决问题的有力工具。介绍微分方程的几个应用实例,将实际问题抽象成微分方程模型,通过求解微分方程,用得到的解来分析实际问题。读者可从中感受到应用微分方程的理论和方法解决实际问题的魅力。

  • 标签: 微分方程 温度冷却 人口预测 传染病传播
  • 简介:摘要:微分方程是数学中的一种重要的方程类型,它能描述自然现象和工程问题中的许多变化规律。但是大多数微分方程解法是无法用解析的方式求解的,因此需要借助数值解法来近似求解。本文将介绍微分方程的常用数值解法。

  • 标签: 欧拉方法 龙格-库塔方法 微分方程 常用数值解法
  • 简介:摘要:微分方程是数学联系实际,并应用于实际的重要途径和桥梁,是各个学科进行科学研究的强有力的工具。本文简单探讨了微分方程在不同学科领域的应用案例。

  • 标签: 微分方程 应用
  • 简介:给出了求解非线性微分方程精确行波解的代数,利用此方法获得了非线性微分方程若干形式的精确行波解,并在计算机代数系统REDUCE上得以实现.

  • 标签: 非线性微分方程 行波解 符号计算
  • 简介:在分析微分方程课程教学现状的基础上,提出了微分方程课程的教学设计策略.克服以往传统教学中存在的缺陷,剖析教学上的难点,实施以"融合背景、剖析思想、多维表达、多层训练"为主要内容的微分方程课程教学设计策略,培养学生的理论分析能力、解决问题的能力和创新能力.

  • 标签: 微分方程 教学设计 数学教育
  • 简介:本文将常系数线性微分方程的特征根理论推广到变系数线性微分方程上去,从而建立了线性微分方程系统一的特征根理论。常系数线性微分方程的特征根理论实质是矩阵的特征根理论,因此,我们建立的理论也可以看成将矩阵的特征根理论平移到线性微分方程系上去。矩阵的特征根分简单特征根(初等因子次数为1)与复杂特征根(初等因子次数大于1)两类。本文先推广前者并称之为“方程的特征根”;然后推广后者,并称之为“方程的特征阵”。

  • 标签: 线性微分方程 特征根 特征方程 变系数 初等因子 线性系
  • 简介:一般来说,在实际中偏微分方程的通解是不容易求出的,用定解条件确定函数更是比较困难。本文在运用MATLAB解偏微分方程时,列出两种方法:pdepe函数和PDE工具箱,并应用实例展现出两种方法的实现过程。结果表明:MATLAB对解偏微分方程带来极大的方便,并且在此基础上可以解决更多更复杂的问题。

  • 标签: 偏微分方程 MATLAB PED TOOLBOX
  • 简介:摘要:本文全面介绍了法国数学家克莱罗的生平,概括了他在各学科里的杰出成就,详细介绍他在常微分方程领域的主要工作,即以其名字命名的克莱罗方程,其解不仅具有特别的性质,方程自身更是一类重要的可积类。

  • 标签: 常微分方程,通解,奇解,包络,-判别曲线,-判别曲线。
  • 简介:简化了用"常数变易"求常系数非齐次线性微分方程特解的过程,给出了求二阶常系数非齐次线性微分方程特解的一般公式.并将该方法推广到对n阶方程的降阶,从而求其特解.此方法简单实用,且运算量小.

  • 标签: 常数变易法 微分方程 特解 降阶
  • 简介:常数变易是求一阶线性非齐次微分方程通解的方法,既实用,又巧妙。文章利用这种方法,探讨二阶线性常系数非齐次微分方程的特解和伯努利方程通解的计算,结果行之有效,且比教材中求二阶线性常系数非齐次微分方程特解的方法(待定系数)使用范围更广,并给出了对应方程的简单应用。

  • 标签: 微分方程 常数变易法 应用