简介:本文首先利用共轭梯度及矩阵性质,构造迭代算法,并证明算法的收敛性,同时对该算法当方程相容时收敛到问题的极小范数解进行证明.然后,对该算法进行细微修改,应用于相应的最佳逼近问题.最后给出相关的数值实例,验证算法的有效性.
简介:研究了广义Jacobi矩阵的特征值和特征向量问题,给出了一个特征对恰是广义Jacobi矩阵J的第j个特征对的充分必要条件。
简介:对任意给定的矩阵,通过划分矩阵指标集,利用定义和不等式的放缩,给出广义Nekrasov矩阵一类新的判别法,改进和推广了已有相关结果,并用数值实例说明了所得结果的优越性。
简介:介绍了对称广义拟向量平衡问题,并且通过非线性纯量函数,利用不动点定理,证明了对称广义拟向量平衡问题解的存在性定理.
简介:广义Nekrasov矩阵在经济数学、控制理论、数值代数等诸多领域中都有着重要的作用.本文研究了广义Nekrasov矩阵的判定问题.首先从矩阵的元素出发,利用不等式放缩的方法,构造正对角矩阵因子,获得了广义Nekrasov矩阵几种新的判别方法,推广了已有的一些结果.最后用数值算例说明了所得结果的有效性.