学科分类
/ 25
500 个结果
  • 简介:在计算机上基于Mizar系统下矩阵的定义,给出对称矩阵与反对称矩阵的属性定义.并在此基础上证明了对称矩阵和反对称矩阵的部分基本性质。以及相关定理.

  • 标签: 次对称矩阵 反次对称矩阵 Mizar
  • 简介:定义了上三角等次对角线矩阵和上三角交错对角线矩阵,讨论了矩阵方程AX-XA=0的对称解与AX+XA=0的反对称解.在此基础上考虑了以下问题的可解性:给定A∈R^n×m,D∈R^m×m,分别求X,Y∈SR^n×m和X,Y∈ASR^m×m,使得XA=YDA.

  • 标签: 对称矩阵 反对称矩阵 广义特征值 反问题
  • 简介:文讨论了循环矩阵的对角化问题。本文讨论推广了的一类循环矩阵——广义循环矩阵。首先确定了复数域上由U确定的一类广义循环矩阵所组成的空间的最大维数;然后给出了复广义循环矩阵与对角阵西相似的充要条件。

  • 标签: 广义循环矩阵 基本广义循环矩阵 特征值 特征向量 酉相似
  • 简介:本文定义了对称矩阵的概论,并给出了对称阵的一些结论。

  • 标签: 次对称阵
  • 简介:该文主要研究了m-1个k广义对合矩阵与任意矩阵线性组合的t广义对合性,它是已有结果关于广义对合矩阵与任意矩阵线性组合的保持性问题的推广,并举出了一个应用例子.

  • 标签: k次广义对合矩阵 线性组合 保持性
  • 简介:1.引言设A是任意复元素矩阵,则A的Moore—penrose广义逆是使得AXA=A,XAX=X,(AX)^H=AX,(XA)^H=XA(1.1)同时成立的唯一矩阵x=A^+,(其中上标H表共轭转置),若A是方阵,则A的Drazin广义逆是使得A^k=A^k+1X(k为某个正整数)(1.2)X=X^2A(1.3)AX=XA(1.4)同时成立的唯一矩阵X=Ad。

  • 标签: 素矩阵 广义逆 共轭转置 正整数 方阵
  • 简介:将文[1,4]中定义广义正定矩阵的概念再作推广,并讨论各种不同定义下的广义正定矩阵间的包含关系,给出M-矩阵等价的四种新定义.

  • 标签: 广义正定矩阵 M-矩阵 等价性
  • 简介:基于正交投影变换,给出了广义投影对称矩阵的定义,并讨论了其结构特性.在此基础上,考虑了此类广义对称矩阵的左右逆特征值问题的可解性条件,并得到其通解表达式.同时,对任意给定矩阵得到了相应最佳逼近问题的唯一解.

  • 标签: 正交投影 广义投影对称矩阵 左右逆特征值问题 最佳逼近
  • 简介:将帕斯卡矩阵推广为函数矩阵,称为广义帕斯卡函数矩阵,也就是下三角函数矩阵的一种.并讨论其几何性质,从而给出一些恒等式的推导方法.

  • 标签: 帕斯卡矩阵 组合恒等式 矩阵函数
  • 简介:讨论了体上矩阵具有固定秩的(1)-逆矩阵的性质,并类似得到体上矩阵具有固定秩(2)-逆矩阵的几个结果.

  • 标签: 矩阵 (1)-逆 (2)-逆
  • 简介:广义Nekrasov矩阵在经济数学、控制理论、数值代数等诸多领域中都有着重要的作用.本文研究了广义Nekrasov矩阵的判定问题.首先从矩阵的元素出发,利用不等式放缩的方法,构造正对角矩阵因子,获得了广义Nekrasov矩阵几种新的判别方法,推广了已有的一些结果.最后用数值算例说明了所得结果的有效性.

  • 标签: NEKRASOV矩阵 非奇异H-矩阵 对角Schur补