简介:探讨了交换半环上全矩阵代数的广义Jordan导子是否能退化成广义导子的问题.令R表示2-非挠的交换半环,证明了R上的全矩阵代数Mn(R)上的每个广义Jordan导子都是广义内导子,进而它也是一个广义导子.
简介:设函数b=(b1,b2,…,bm)和广义分数次积分L-a/2(0〈α〈n),它们生成多线性算子定义如下Lb-a/2f=[bm…,[b2[b1,L-a/2]],…,]f,其中m∈Z+,bi∈Lipβi(0〈βi〈1),其中(1≤i≤m).将讨论Lb-1a/2。从Mp^q(Rn)到Lip(α+β-n/q)(Rn)和q^q(Rn)到BMO(Rn)的有界性.
简介:探讨了交换半环上上三角矩阵代数的广义Jordan导子的刻画问题,证明了交换半环R上的上三角矩阵代数T_n(R)到T_n(R)-双模M的每个广义Jordan导子都可以分解成一个广义导子和一个反导子之和。
简介:在成长过程中,我遇到的事情多得像天上的繁星、地上的贝壳,数也数不清楚,有的教会我懂礼貌,有的教会我细心……其中有一件事让我记忆深刻,因为它教会我做人要讲诚信。那时我上幼儿园。在一节手工美术课上,一位同学看到我爸爸出差时买给我的水彩笔,很想要,便拿出一块漂亮的手帕对我说:'黄轩,我用这块手帕换你的这盒水彩笔,可以吗?'这盒水彩笔是我画画时最喜欢用的,可那块手帕我也非常喜欢,我犹豫不决,想了一会儿,还是答应和他换了。
简介:设D是无平方因子正整数.本文证明了:方程x!=D=y2仅有有限多组正整数解(x,y),而且这些解都满足x<2D.
简介:长期以来对计算机领域的数据恢复似乎缺乏全面的认识,我们首先应该给计算机数据一个广义的概念。某些人认为只有类似文本文件、数据库中的纪录或表这样的东西才是数据:实际从广义上说,任何位于计算机存储介质上的信息都是数据,无论是那种介质,也无论其具体作用如何,他们都是数据。与这种概念对应,任何使这些信息发生非主观意愿的变化都可视为破坏。