简介:基于矩阵谱问题构造了一种实用的方法来对一类实轴上的可积方程的Riemann-Hilbert问题进行建模。当跳跃矩阵是单位矩阵时,孤立子解通过特殊约化的Riemann-Hilbert问题显性表示。作为一个范例,对于具有任意阶矩阵谱问题的多分量非线性薛定谔方程,给出了该方法的具体应用。
简介:本文给出了Benjamin-Ono方程的孤立波解,并应用M.Grillakis[4,5]等的抽象理论,通过谱分析,证明了该孤立波解是轨道稳定的。
简介:本文给出了Benjamin-Ono方程的孤立波解,并应用M.Grillakis[4,5]等的抽象理论,通过谱分析,证明了该孤立波解是轨道稳定的.更多还原
简介:本文利用改进的齐次平衡法,首先得到了带强迫项的变系数KdV方程的多孤立波解,然后借助此解得到了强迫KdV方程的多孤立波解.最后作为应用例子,利用图形分析方法分析了Rossby孤立波的相互作用,指出了影响Rossby孤立波相对幅度、相位、传播方向及平衡位置的主要原因.