简介:摘要:本文针对在邻居用户协同评分识别数据极端稀疏的大环境下运行传统应用协同推荐过滤度量推荐评分算法可能存在的一些弊端,从如何提高不同邻居之间用户评分识别率的准确性角度出发,对目前传统用户相似性平均度量推荐方法特点进行大胆改进,在此方法基础上创新提出一种基于用户相关性平均值的协同推荐过滤算法。实验分析结果表明,该分析算法不仅能有效增强居民邻居推荐用户在居民推荐结果中的品牌影响力,有效帮助提高邻居推荐结果精度,改善邻居推荐结果质量。
简介:摘要:当前,随着我国经济的快速发展,以及人们生活水平的提高,使得人们的个性化需求增多。而利用协同过滤算法所制定的电影个性化推荐系统,是网络技术与计算机技术在电影服务中的成功应用。对此本文提出电影推荐系统以协同过滤算法计算用户相似度来帮助人们寻找自己喜欢的电影,协同过滤算法的优点是适用范围广重复使用率高,不使用数据的专业知识,实现效果明显。
简介:综合了经典的协同过滤算法和基于网络结构的个性化推荐算法。项目同其他所有项目的相似度之和被认为是项目在个性化推荐系统中的初始推荐资源,然后通过二部图的网络结构将这种资源进行重新分配。同时考虑两个项目之间的相互作用关系,提出了最终的推荐算法。最后,根据用户未曾收集项目最终所获得的资源进行排序,向用户推荐资源最多的项目。通过考察项目之间相互作用可以发现,推荐系统的算法衡量指标不能同时达到最优。同时为了进一步增强算法的可扩展性,引入了一个度指数来调节算法,这样在实际应用中就可以根据需要,通过调整项目之间的相互作用以及项目自身的度指数,达到最好的用户体验和系统多样性。