简介:将多元威布尔分布形状参数相等的检验转化为多元极值分布尺度参数相等的检验,利用Logistic模型的似然比统计量,给出相关参数为0.3,0.5,0.8时,检验统计量的模拟分位数和功效,指出相关参数越小,似然比统计量的功效越大。
简介:针对多星座情况下多卫星同时故障时的接收机自主完好性检测的问题,分析了多卫星同时故障的原因及特点,提出基于极大似然比的分层完好性检测方法。通过奇偶向量矩阵的计算,根据极大似然估计,进行故障检测与隔离,利用全量检验统计值与部分检验统计值之间的关系进行故障卫星的确定,并利用接收机的数据进行仿真验证。仿真结果表明,本方法可以快速有效地实现多星座情况下的接收机自主完好性检测,检测出并隔离故障卫星。
简介:摘要:参数化密度分布模型作用下的最大似然方法以及 EM算法常被应用到遥感图像分类中,由于受到遥感信息统计分布影响,要在改进 EM算法的基础上科学运用遥感图像分类方法。因此,本文从不同角度入手探讨了遥感图像最大似然分类方法的 EM改进算法,在优势作用发挥基础上进行合理化计算以及分类,提高遥感图像分类效率以及质量。
简介:用测度变换和泰勒展开方法研究非稳定状态α-布朗桥极大似然估计的精细大偏差展开,得到其估计量指数型收敛速度的精细刻画.
简介:新型犯罪日趋复杂,案件审判人员对高标准技术工作的需求不断增加,这些都要求研究新的证据评价方法,从而对各种微量物证理化检测数据的证据价值进行评估。证据评估方法能够反映法庭科学家在案件审理中的作用。这意味着上述数据(证据)应当在案件诉讼中控辩双方提出了相互对立的假设H1和H2的情况下接受评估,贝叶斯模型适用于这种情况下的证据评估。本文描述了在比较和分类(其实分类也是以比较为基础)问题中使用似然比方法(LR)对被观察的理化数据进行评估的原理。LR模型允许在一次计算中将所有重要的因素都包括在内,以此实现对相关理化数据的评估。这些因素包括,被比较样本间被比对理化数据的相似性,被测理化数据在有关总体中的稀有性,以及可能的误差来源(样本之内、之间的差异性)等。作为统计工具,LR模型只能用于仅以几个变量描述的数据库,而事实上大多数理化数据都是高度多维的(比如光谱),因此,需要使用缩维手段比如图形模型或适当的化学计量工具作降维处理,本文对此举例说明。需要指出,LR模型只应作为一种支持性(非决定性!)的工具,其结果(论)要接受严格的分析判断。换言之,统计方法并不能传达绝对的真相,采用的分析技术会有各自的不确定度,各种可能的错误答案也是统计方法的构成部分。因此,应当进行灵敏度检验亦即对所用分析方法作处理验证,从而确定其表现优劣。基于此,本文采用经验交叉熵方法举例说明如何对LR模型作校验。关于来源水平的理化数据评估,这涉及到比较样品是否源自于同一物体即是否具同一性的问题。通常,办案人员(法官、检察官或警察)会对被发现的取自于身体、衣服或鞋子的微量物证(显示与对照样本类似)是否发生了转移并留存下来的活动感兴趣,这就是所�
简介:在当前基于粒子滤波的检测前跟踪(PF—TBD)算法中,通常是利用累积似然比去检测目标,由于能量累积的效果,无法快速检测到目标的消失。针对这个问题,提出了一种新的基于似然比的检测前跟踪方法。该方法运用单个时刻的似然比进行目标有无判别,并结合多个连续时刻的判别结果给出最终的目标检测结果。仿真结果表明,与传统的基于似然比的弱目标检测前跟踪方法相比,该方法能够减小目标出现时的检测延时,并且能够有效地检测到目标消失。