简介:利用常规观测资料、FY-2G卫星TBB资料和NCEP(1°×1°)再分析资料,分析造成2016年6月1—2日重庆地区暴雨天气过程的MCS及内部2条β中尺度雨带的演变特征,并着重对比分析2条雨带锋区、锋生及不稳定机制的差异。结果表明:(1)此次暴雨天气过程由MCS造成,其内部有南、北2条β中尺度雨带,分别位于MCS南、北两侧TBB梯度大值区;(2)北雨带位于低层锋区内,是一条与锋面近于平行的中尺度雨带,而南雨带位于锋区前缘的高湿区和高能区中,对流性降水更强;(3)锋生函数各项对南北雨带锋生贡献有显著不同,北雨带以水平运动作用锋生为主,而南雨带则以垂直运动作用锋生为主,南北雨带锋生各项这种差异,与大气层结稳定度有关;(4)南北雨带不稳定机制有显著不同,南雨带为对流性不稳定机制,北雨带沿着锋面有向冷区倾斜的斜升气流发展,为对称不稳定机制。
简介:用合成分析方法探讨MCC热力学结构的演变规律,结果表明:MCC整个生命史里,对流层中下部为正涡度区,200hPa以上为负涡度区;发展时刻辐合区突然抬升;MCC前期的垂直上升速度最大中心高度低于后期的;MCC的高低空的冷心、中层暖心的温度结构在成熟期以后不明显
简介:采用MM5非静力原始方程中尺度模式模拟了1995年7月26日发生在高原上的中尺度对流系统(MCS).(1)模式基本上模拟出26日高原上MCS发生发展的大尺度背景场,它们是强大的对流层高层青藏高原反气旋高压和强的低层热力强迫.模式还得到了与MCS相联的α中尺度涡旋,它能在500hPa实测风场中得到反映,而且,模式模拟的400hPa雨水混合比场在一定程度上模拟了MCS在Tbb图上反映的β中尺度次级结构特征.另一方面,模拟存在的差异也是明显的,例如:时间上有3小时滞后;模拟的MCSα中尺度涡旋位置偏西3-5个经度.(2)模拟的α中尺度气旋性涡旋的结构和演变是高原上探空资料难于描述的.模拟的结果表明,它只限于高原上在450hPa以下的对流层中低层,范围向上减小,在500hPa直径约4个经纬度.这个中低层涡旋对应上升运动区,但它的上方是反气旋涡度,对应下沉运动.该涡旋是在高原上从无到有发展出来的,出现在MCS成熟阶段和之后,持续3-6个小时.在它的形成和消亡时都是位势高度场的变化先于风场的变化,这表明该涡旋与高原上的热力作用密切相联.(3)一系列模式敏感性试验考察了不同的物理过程和高原地表热力强迫对高原上MCS的影响.结果表明,文中的高原上MCS在高层青藏高原反气旋高压的大尺度背景下主要受中低层热力强迫的支配.这些模拟结果暗示出一定的高层大尺度背景下适当的低层热力效应就有可能在高原上形成MCS的可能性.
简介:对1995年7月25-28日高原上连续数日出现MCSs的现象进行了红外云图特征及其演变、大尺度环境背景场和对流有效位能的分析.可以发现,所有这些MCSs有着相似的日变化演变过程;它们的初始对流在中午由于日射加热开始活跃,之后迅速发展,这些MCSs在后下午形成,在傍晚达到最强,之后逐渐减弱.其中26日MCS最为强大,它是在单一的强大的近于圆形的高原反气旋高压背景下受强的低层热力强迫和条件不稳定的驱动而发生的.这些发生条件都与高原本身的热力作用紧密相关,所以它的发生发展主要与高原特有的较为纯粹的热力因子相联系.28日MCS是另一个很强的MCS,它明显地受到中纬度西风槽的斜压区的影响,这二个很强的MCS有着不同的发展机制和显著不同的表现特征.
简介:采用NCEP再分析资料、自动站加密观测资料、逐时云顶亮温TBB资料、多普勒雷达资料.以及成功模拟基础上的高分辨率模式输出资料,对2004年7月10日北京突发性暴雨过程中β尺度对流系统的发生发展、结构特征及成因进行了综合分析。结果表明:本次暴雨过程是由具有中β尺度的对流系统所产生,它发生在大尺度暖脊之中:对流层中层的短波槽.以及低层西风槽前的西南气流与暖切变线北侧的东南气流的汇合,为MβCS的发生提供了良好的环境每件。该MβCS由2个中尺度对流云团合并而成,具有椭圆形结构特征,其水平尺度为150km×100km,时间尺度约为5h。该MβCS在对流层低层表现为中尺度辐合线或强辐合中心,雷迭回波和径向速度场所反映的中尺度回波带和辐合线。与MβCS的演变有密切的关系。在其发展强盛期,中β尺度对流系统呈现相当正压性;垂直倾斜的上升气流及其两侧,有明显的下沉补偿气流.显示本个例MβCS具有对流型风暴的结构特征。此次MβCS发生在强对流不稳定层结条件下,在700hPa以下对流层低层具有明显的假相当位温θse暖舌;近地面层偏南风与偏东风2支气流的辐合,以及冷空气的侵入,导致行星边界层内能量锋区的加强,从而有利于MβCS的发生发展。
简介:利用常规观测资料、风云卫星资料、多普勒天气雷达资料、地面自动站资料、NECP/NCAR(1°×1°)再分析资料,对2015年6月23—26日南疆西部一次暴雨强对流过程的中尺度特征进行分析。结果表明:(1)南亚高压由带状分布向双体型调整、中亚低涡形成后发展移入南疆是此次暴雨强对流发生的天气背景。强对流发生前各种对流参数变化明显,较强的对流有效位能、强烈的垂直风切变、0℃层和-20℃层高度适宜,这些均有利于短时大冰雹和短时强降水的发生;(2)除中亚低涡自身携带水汽外,孟加拉湾、阿拉伯海和南海水汽输送为强降水区提供了充足水汽源,尤其是中低层的东南风急流辐合为短时强降水提供了水汽辐合的动力条件;(3)23日短时大冰雹和短时强降水天气由生命史达7h、最低TBB达-36℃的中-β尺度对流云团相继造成,其中,造成短时大冰雹的中-β尺度超级单体最强回波(60dBZ)高度达4km、50dBZ回波高度达-20℃层高度,而短时强降水由断裂弓形回波、飑线型弓形回波下的中-β尺度对流风暴造成;25日短时强降水由层积混合云中2个最低TBB达-44℃的中-β尺度对流云团快速移过造成。
简介:利用常规气象观测资料、区域自动站加密观测资料和GFS0.5°×0.5°逐6h的分析场数据以及多普勒雷达、风云卫星资料,对2013年9月13日浙江北部一次强对流天气过程的特征及其成因进行了中尺度分析,结果表明,受西太副高西北部边缘的暖湿西南气流和东移高空槽的共同影响,引发了浙江北部的强对流天气。在有利的大尺度环境场和物理量场配合下,当低层925hPa的中尺度辐合线和对流层中层700hPa的垂直上升运动区相重合时,中尺度辐合线附近会产生强对流,这对强对流的发生发展具有一定的预报指示意义。此次过程中强对流天气与雷达回波中心对应良好,中尺度辐合线基本与对流发生发展相对应,辐合线周边区域是强天气容易发生发展的区域,辐合线先于降水出现,随后在辐合线周边出现了强降水和大风天气。
简介:利用常规气象资料、FY-2E卫星云图资料、榆林CINRAD/CB雷达资料和NCEP1°×1°再分析资料,对陕西北部绥德县2012年7月15日夜间一次短时特大暴雨过程进行分析,结果表明:高对流有效位能为大暴雨积累了能量条件,850hPa两条湿舌为该次大暴雨的主要水汽来源。850hPa的“人”字型切变和地面中尺度低压加强了暴雨区辐合上升运动,干线过境触发了强对流天气的爆发。强降水时段在卫星云图上表现为2个中尺度对流系统(MCS)合并增强且缓慢移动;雷达回波显示3个对流单体发展较快,后向传播且合并增强为深厚的湿对流风暴,其中一个对流单体有中气旋生成,水平尺度12km,垂直累积液态水含量>65kg/m^2,并有三体散射现象,强降水开始后,三体散射消失。
简介:利用常规气象观测资料、NCEP1°×1°格点资料、卫星云图和雷达资料对2013年8月1日河南省中南部地区一次强对流过程的中尺度特征及天气成因进行了分析。结果表明:河南中南部地区此次强对流天气过程是由高空槽、副热带高压外围西南气流、中低层切变线及低空急流共同作用产生的。从四川盆地东移过来的对流云团和江淮地区低层切变线上形成的云团在河南中南部地区合并,发展成新的对流云团,使降水量偏高;雷达回波和径向速度特征较明显,造成此次短时强降水和短时大风的对流单体具有明显的出流边界、回波悬垂、弱回波区及有界弱回波等特征。中尺度演变特征表明,一系列中尺度暴雨雨团发生、发展和合并加强成为中尺度对流复合体,且中尺度对流雨团在CAPE密集带和地面辐合线附近区域生成,并有向CAPE大值区及地面辐合线移动发展的趋势。强降水发生前,高层低能舌叠加在低层高能舌上的能量水平分布的垂直配置,导致大气对流性不稳定层结建立;低层正涡度的发展和水平风的切变导致垂直涡度发展,使垂直涡度增大,上升运动增强;高低空急流的耦合作用产生次级环流,触发了对流不稳定能量的释放,产生了强对流天气。