学科分类
/ 1
3 个结果
  • 简介:摘要 : 针对温室番茄智能化管理需要,研究茎秆、叶片和绿果等 3类相近色目标的多波段图像融合方法,以凸显目标与背景亮度差异,提高目标视觉识别效率。根据其各自在 300~1000 nm范围的反射光谱特征差异,建立了针对其光谱数据分类的 Lasso正则化逻辑回归模型。基于模型的稀疏解特征,确定具有较大权值系数的 450、 600和 900 nm等 3个波段作为最优成像波段,在此基础上构建了温室番茄植株多波段图像在线采集系统。结合最优成像波段下相近色目标图像特征分析,提出了基于 NSGA-II的多波段图像加权融合方法,以增强特定目标与近色背景物体的图像亮度差异。最后通过现场试验对多波段图像融合效果进行评估。结果表明,分别以茎秆、叶片和绿果器官作为识别目标,通过多波段图像融合处理后,目标与背景之间的图像灰度差异绝对差值相应达到单波段图像的 2.02、 8.63和 7.89倍,即被识别目标与其他近色背景的亮度差异显著增强,且背景物的亮度波动得到抑制。本研究结果可以为农业环境近色目标视觉识别相关研究提供参考。

  • 标签: 农业机器人 番茄植株 相近色目标 光谱特征 图像融合 NSGA-II
  • 简介:摘要 : 含水量是表征水稻生理和健康状况的关键参数,精确预测水稻含水量对于水稻育种和大田精准管理具有重要意义。目前,利用无人机搭载光谱图像传感器监测作物生长的研究主要集中在利用植被指数评估作物在单一或者几个生育期的生长参数,针对作物含水量监测的研究非常有限。本研究主要利用多旋翼无人机低空遥感平台获取不同生育期水稻冠层的 RGB图像和多光谱图像,通过提取植被指数和纹理特征,分析水稻的动态生长变化,并构建了基于随机森林回归方法的含水量预测模型。试验结果表明:( 1)从无人机图像提取的植被指数、纹理特征以及地面测量的含水量都能用于监测水稻生长,并且这些参数随水稻生长呈现出了相似的动态变化趋势;( 2)与 RGB图像相比,多光谱图像评估水稻含水量具有更高的潜力,其中归一化光谱指数 NDSI771,611实现了更好的预测精度( R2=0.68, RMSEP=0.039, rRMSE =5.24%);( 3)融合植被指数和纹理特征能够进一步改善含水量的预测结果( R2=0.86, RMSEP=0.026, rRMSE=3.51%),预测误差 RMSEP分别减小了 16.13%和 18.75%。上述结果表明,基于无人机遥感技术监测水稻含水量是可行的,可为农田精准灌溉和田间管理决策提供新思路。

  • 标签: 无人机低空遥感 水稻含水量 RGB图像 多光谱图像 植被指数 纹理特征 特征融合
  • 简介:摘要 : 目前,针对蜂群发生崩溃式消失的现象还缺乏有效的观测和分析手段。本研究在分析蜂群行为与检测特征的基础上,设计了一种基于物联网技术的蜂群多特征长期监测系统。该系统采用太阳能供电,融合了多种传感器,能够检测蜂群的多个特征(蜂箱内部的温度、湿度、蜂群重量、声音和蜜蜂的进出量),并利用无线数据同步传输技术将这些数据上传到远程云服务器中。基于该系统,本研究还进行了针对意大利蜜蜂从 2018年秋季到 2020年春季为期 235天的长期连续监测试验,记录了蜂群在秋衰期、越冬期和春繁期蜂箱内部温度、湿度、蜂群重量、声音和进出量的逐小时的细致变化。试验结果表明,在此期间,蜂箱内的平均温度呈现从 25℃下降到 -5℃再回升至 15℃的抛物线变化,相应的进出巢次数也由大约 8万次 /天减少至 0次 /天再增加至 5万次 /天。在越冬期中,蜂群的重量呈现出大约 25 g/天的线性下降趋势,同时蜂箱内也更为安静,声音的频率集中于 0~64 Hz。由此表明,在不干扰蜂群的情况下,该监测系统获得的特征数据能够有效地揭示蜂群的日常活动和趋势变化,可用来研究蜂群的行为生物学、探索崩溃式的蜂群消失成因以及发展精确化蜜蜂养殖业。

  • 标签: 蜂群监测 智能蜂箱 多特征 智慧农业 物联网技术