简介:研究了对于三车道的高速公路,自动驾驶汽车对混合交通流的通行能力及安全性的影响。引入变道欲望值、连续刹车率、空间速度方差和时间速度方差的概念,基于交通流元胞自动机模型,针对手动和自动驾驶2种汽车,建立了单向三车道的加减速和换道规则。选取6个评价参数,针对三车道模型,研究了随着自动驾驶汽车比例的增加,车道平均速度、平均速度的方差、交通密度、连续刹车率以及变道次数的变化情况。实验结果表明:在通行能力方面,当自动驾驶汽车的比例持续增加时,整个车道的平均速度、交通密度显著增加,从而大大提高了此交通网路中的通行能力;同时空间速度方差和时间速度方差会显著减少,说明整个交通流的平稳性增加了。在安全表现方面,当自动驾驶汽车的比例持续增加时,整个交通网路中的连续刹车率、变道次数先逐渐增加,然后逐渐减少,从而很好地刻画了安全性。最后分析了模型的优缺点,并指出了改进的方向。
简介:为实现无人机高精度高可靠性导航,提出了一种以捷联惯性导航系统(SINS)为主,以地形辅助导航(TAN)、大气数据系统(ADS)及电子磁罗盘(MCP)为辅的组合导航方式。通过分析SINS、TAN、ADS及MCP单一系统的工作原理及输出误差模型,构建了SINS/TAN、SINS/ADS及SINS/MCP系统的状态方程及观测方程,最后采用联邦卡尔曼滤波方式实现了对各组合系统的信息融合。仿真数据对比表明:SINS/TAN系统位置误差较小,但航向误差较大;SINS/ADS系统速度误差较小且比较稳定,但位置误差随时间发散;SINS/MCP系统航向误差方差可达0.3783’,但其位置和速度估计精度不理想;而SINS/TAN/ADS/MCP系统能够克服上述不足,实现所有导航参数误差估计的高精度。
简介:针对四旋翼无人机鲁棒自适应飞行问题,提出了一种基于指数收敛的控制方法。考虑到四旋翼系统的欠驱动、强耦合等非线性特性,采用线性化反馈控制策略实现对其轨迹追踪飞行能力的基本控制;针对线性化反馈控制易受系统内外部未知干扰等影响,采用基于指数收敛干扰观测器组合控制设计,实现四旋翼飞行的鲁棒与自适应控制;线性反馈及状态观测器控制系统基于指数收敛稳定。进行了仿真分析,结果表明,干扰观测器对四旋翼系统中存在的未知干扰具有很好的估计能力,所设计的基于指数收敛控制系统,结构简单,且具有较强的干扰抑制能力和较高的系统稳定性,满足四旋翼无人机的鲁棒及自适应飞行能力要求。
简介:针对四旋翼无人机轨迹追踪问题,提出了一种基于扩张状态观测器的鲁棒滑模控制方法。考虑无人机系统受到内外部扰动、线速度未知等不确定性影响,通过引入扩张状态观测器,对系统不确定因素进行实时估计并给予补偿,实现了系统对扰动的鲁棒性和对环境的高度适应性。同时,滑模控制通过引入切换函数来消除干扰及不确定项,但较大的切换增益会引起系统颤振,因此,干扰和不确定项是颤振的主要来源,利用扩张状态观测器来估计干扰及不确定项并加以补偿,消除了颤振。利用Lyapunov理论,证明了控制系统的稳定性。系统仿真实验结果表明,所提出的控制方法能够保证四旋翼无人机轨迹追踪的鲁棒性,旋翼转速最大跳变幅值降低86.4%-94.5%,提高了系统稳定性。