学科分类
/ 25
500 个结果
  • 简介:本文给出了分数阶积分微分方程的一种新的解法.利用未知函数的泰功多项式展开将分数阶积分微分方程近拟转化为一个涉及未知函数及其n阶导数的线性方程组.数值例子表明该方法的有效性.

  • 标签: 泰勒多项式 分数阶 积分微分方程
  • 简介:本文考虑中立型标量方程x′(t)=a(t)x(t)+∫t-∞g(t,s,x(s))ds+∫t-∞h(t,s,x′(s))ds+f(t,x(t))的周期的存在唯一性问题.其中a是连续函数,f是R×R上的连续函数,g(t,s,x)和h(t,s,x)是R×R×R上的连续函数,以及a(t+T)=a(t),g(t+T,s+T,x)=g(t,s,x),h(t+T,s+T,x)=h(t,s,x),f(t+T,x)=f(t,x).通过利用线性系统解的估计式和泛函分析的方法,我们得到保证上述系统周期解存在和唯一的充分性条件.

  • 标签: 周期解 存在性 唯一性 无穷时滞 中立型积分微分方程
  • 简介:研究二阶中立型积分微分方程:「x(t)-∫^τ0p(s)x(t-s)ds」″=∫^σ0q(s)x(t-s)ds建立了该方程的所有有界解振动的一个充分必要条件。

  • 标签: 积分微分方程 有界解 振动 中立型方程
  • 简介:给出并证明了自治和非自治常微分方程积分因子存在的充要条件,从而给出当常微分方程组的向量场散度不为零时的构造积分因子的方法。

  • 标签: 常微分方程组 积分因子 充要条件
  • 简介:研究了一类带积分边值条件的Riemann-Liouville型分数阶微分方程边值问题.在只要求非线性项满足Li-Caratheodory条件的情况下,运用单调迭代方法和上下解方法建立并证明了边值问题正解的存在性定理,最后给出例子用以表明所得结论的适用性.

  • 标签: 分数阶微分方程 边值问题 正解 上下解方法
  • 简介:研究了二阶微分方程组的耦合积分边值问题.在一对上-下解和下-上解的条件下,利用一个新的比较原则和Fredholm定理给出了其极解的存在性.

  • 标签: 耦合积分边值问题 极解 上-下解 下-上解
  • 简介:微分方程初值问题转化为等价的积分方程,近来此方法被应用于讨论非线性微分方程初值问题解的存在性.利用凸幂凝聚算子的不动点定理,研究了Banach空间中混合型非线性二阶积分-微分方程的初值问题解的存在性.

  • 标签: BANACH空间 积分-微分方程 解的存在性 初值问题
  • 简介:本文给出了数值求解一类偏积分微分方程的二阶全离散差分格式.采用了Crank-Nicolson格式;积分项的离散利用了Lubieh的二阶卷积积分公式;给出了稳定性的证明,误差估计及收敛性的结果.

  • 标签: 二阶 积分微分方程 全离散 阶差 收敛性 误差估计
  • 简介:使用锥理论及单调迭代技术,首先讨论了Banach空间中一阶积分-微分方程初值问题的最小最大解的存在性,并在此基础上讨论了带有一阶微分项的二阶积分-微分方程初值问题的最小最大解的存在性.更多还原

  • 标签: 积分-微分方程 初值问题 序BANACH空间 最大最小解
  • 简介:在分析微分方程课程教学现状的基础上,提出了微分方程课程的教学设计策略.克服以往传统教学中存在的缺陷,剖析教学上的难点,实施以"融合背景、剖析思想、多维表达、多层训练"为主要内容的微分方程课程教学设计策略,培养学生的理论分析能力、解决问题的能力和创新能力.

  • 标签: 微分方程 教学设计 数学教育
  • 简介:本文将常系数线性微分方程的特征根理论推广到变系数线性微分方程上去,从而建立了线性微分方程系统一的特征根理论。常系数线性微分方程的特征根理论实质是矩阵的特征根理论,因此,我们建立的理论也可以看成将矩阵的特征根理论平移到线性微分方程系上去。矩阵的特征根分简单特征根(初等因子次数为1)与复杂特征根(初等因子次数大于1)两类。本文先推广前者并称之为“方程的特征根”;然后推广后者,并称之为“方程的特征阵”。

  • 标签: 线性微分方程 特征根 特征方程 变系数 初等因子 线性系
  • 简介:正倒向随机微分方程源于随机控制和金融等问题的研究,反之,方程理论的研究成果在控制、金融等领域也有着重要的应用。基于正向和倒向随机微分方程的理论成果,正倒向随机微分方程的研究在短时间内取得了长足进步。本文将从方程可解性这一角度出发,对正倒向随机微分方程目前取得的成果进行系统的总结与探讨。

  • 标签: 倒向随机微分方程 正倒向随机微分方程 可解性 随机控制 金融数学
  • 简介:Foradifferentialequation,atheoreticalproofoftherelationshipbetweenthesymmetryandtheone-parameterinvariantgroupisgiven;therelationshipbetweensymmetryandthegroup-invariantsolutionispresented.Asamapplication,somesolutionsoftheKdVequationarediscussed.

  • 标签: 微分方程 对称性 群不变解 KDV方程