简介:本文中用Kneser’s定理得到下列结论一个新的简单证法.设G为初等Abelp-群(运算用加法),S={a1,a2,…,an)为G的一个n项不含有零然的元素列(元素可允许重复),|s|=n=P^m-1+p-2,,其中P为素数,若对G的任意子群H,S最多含有|H|-1项,则:(1)当m=2时,∑^0(S)=G;(2)当m≥3时,∑(S)=G,特别有(1)Olson’猜想r(Zp+Zp)=2p-2;(2)r(+^mZp)=c(+^mZp)=p^m-1+p-2,m≥3.
简介:研究Gross-Pitaevskii无穷线性级联的Cauchy问题.通过在密度矩阵序列的Sobolev型空间中引进一个(F)-范数,我们建立了解的局部存在性,唯一性和稳定性;也得到了解的明显空时估计.特别是,当初始值为分离形式时这个(F)-范数与通常的Sobolev范数是一致的.
简介:本文研究两类稳定性定理.对LaSalle不变原理做更加合理的改进.研究了Lyapunov直接法,得到了改进的比较原理,并加以证明,最后应用到实例中.
简介:定义在全体实数上的可计算函数是一个很重要的概念.在这以前定义可计算的实数函数有两个途径.第一个途径是首先要定义可计算实数的指标.想要确定实数函数y=f(x)是不是可以计算就要看是否存在一个自然数的(部分)递归函数将可计算实数x的指标对应到可计算实数y的指标.这样一来对实数函数的研究依赖于对自然数函数的研究.第二个定义可计算的实数函数的途径是以逼近为基础的.一个实数函数是可以计算的如果它既是序列可计算的同时也是一致连续的.用这个途径来定义可计算实数函数使用的条件过强以至于很多有用的实数函数成为不可计算的实数函数.例如“〈”和“=”的命题函数就是不可以计算的因为它们是不连续的命题函数.本文讨论了图灵机的稳定性并且给出了一个基于稳定图灵机的可计算实数函数的定义.我们的定义不需要用到自然数的(部分)递归函数.根据我们的定义很多常用实数函数特别是一些不连续的常用实数函数都是可以计算的.用我们的定义来讨论可计算实数函数的性质比原来的定义要方便得多.