简介:利用水热法合成了2个新的对咪唑基苯甲酸镉配合物Cd(C10N2O2H7)2·H2O(1)和Cd2(H2O)5(C10N2O2H7)(C9O6H3)·4H2O(2),通过元素分析、红外光谱和X-射线单晶衍射进行了表征.结果表明:化合物1属于正交晶系,Pnna空间群,a=1.3895(5)nm,b=1.6654(5)nm,c=0.8282(5)nm,V=1.9165(15)nm3,Z=4,R1=0.0263,wR2=0.0793;化合物2属于单斜晶系,P21/c空间群,晶胞参数a=1.3702nm,b=1.7511nm,c=1.2557(4)nm,β=114.819(6)°,V=2.7346(14)nm3,Z=4,R1=0.0573,wR2=0.1667.
简介:以1,2,5-噻二唑-3,4-二酸(H2tdzdc)为主配体,具有螯合配位能力的2,2′-联吡啶为辅助配体,通过水热法合成了2个一维链状配合物,并对其进行了元素分析、红外光谱及单晶衍射结构解析.单晶结构解析表明:配合物[Co(tdzdc)(bpy)(H2O)]n(1)和配合物[Cd(tdzdc)(bpy)(H2O)]n(2)均为一维链状结构,前者为折线型,后者是直线型.配合物1属于正交晶系Pna21空间群,配合物2结晶于三斜晶系P-1空间群.研究发现配位过程中先是金属离子与H2tdzdc配体形成了一维链,辅助配体2,2′-联吡啶再以螯合的形式与中心离子相结合,从而阻断了一维链进一步向多个方向的连接.辅助配体2,2′-联吡啶以"卡角"的形式参与配位,阻断配合物形成高维结构,这在调控结构上有一定的意义.
简介:目的:针对预张力索杆体系,将构件刚度与体系判定相结合,提出分布式静不定和分布式动不定的计算方法,使体系分析从“系统”层面向“构件”层面延伸。创新点:1.推导出具有广泛适应性的分布式静不定公式,并证明与原有方法的内在关系。2.首次提出分布式动不定数学公式。3.给出分布式不定数的物理意义及潜在的应用。方法:该方法在平衡矩阵理论基础上,采用奇异值分解法分别求解相互正交的两类单元变形量和两类节点外荷载模态;在排除整体刚体位移模态后,利用该正交性,求解分布式静不定和动不定。结论:1.该方法能克服已有方法中的奇异性问题,具有普遍性,可适用于动定及动不定结构。2.作为结构双对称性的代表,分布式静不定数可被用作一个简单而有效的分组准则;该准则能提高二次奇异值找力法(DSVD)的效率并能为设计师提供更多的初始预应力设计可能性。3.揭示分布式静不定与结构重要性及结构敏感性间的关系。4.分布式动不定数可被用作节点可动性的一个基本指标。
简介:标题化合物(C24H16N4S)以噻吩-2-甲醛、苯甲酰乙腈和3-甲基-1-苯基-1H-吡唑-5-胺为原料,在离子液体[bmim]Br溶剂中,在80℃搅拌合成得到.其结构通过单晶X射线衍射法确定,晶体属于三斜晶系,空间群P-1,相对分子质量Mr=392.47,晶胞参数a=0.93612(8)nm,b=1.03063(12)nm,c=1.16624(16)nm,V=0.96853(19)nm3,Z=2,晶胞密度Dc=1.346g/cm3,吸收系数μ=0.185mm-1,单胞中电子的数目F(000)=408.晶体结构用直接法解出,经全矩阵最小二乘法对原子参数进行修正,最终的偏离因子R=0.0585,wR=0.1337.在晶体结构中新形成的吡啶环与吡唑环近似于共平面结构.
简介:标题化合物C26H26O5以2,3-萘二甲醛和5-甲基-1,3-环己二酮为原料,在醋酸溶剂中,室温下经搅拌多组分一锅法合成得到.其结构通过单晶X-射线衍射法确定,晶体属单斜晶系,空间群P21,相对分子质量Mr=418.47,晶胞参数a=0.99004(8)nm,b=1.09098(9)nm,c=1.04246(11)nm,V=1.08753(17)nm3,Z=2,晶胞密度Dc=1.278g/cm3,吸收系数μ=0.088mm-1,单胞中电子的数目F(000)=444.晶体结构用直接法解出,经全矩阵最小二乘法对原子参数进行修正,最终的偏离因子为R1=0.0533,wR2=0.1293.在晶体结构中新形成的吡喃环为半椅式构象,而茚中五元环则为信封式构象.
简介:用简单可行的方法合成了功能化的石墨烯(GNSPF6)和磁铁掺杂的还原氧化石墨烯(RGO-Fe3O4),并进一步研究了pH值、接触的时间和温度对它们吸附亚甲基蓝(MB)的影响.结果表明,随着pH值和温度的增加其吸附量也随之变大,从而说明该吸附过程是自发吸热的.因为GNSPF6的吸附过程只用了不到20min的时间,所以它的吸附是高效的.用经典的准一级反应、准二级反应和粒内扩散模型对其吸附过程进行动态分析,从结果可以发现,准二级动力学模型比准一级动力学模型更适用于描述吸附过程.采用传统的Langmuir,Freundlich和L-F吸附等温线模型来模拟分析数据,在20℃时,由Langmuir吸附等温线模型模拟分析得知GNSPF6和RGO-Fe3O4对MB的最大吸附量分别为374.4和118.4mg/g.