简介:关于凸函数局部有上界和函数Lipschitz连续性的等价性已经被多次研究过,但是这些研究都未曾涉及凸函数的Lipschitz连续性与函数有下界的关系.本文利用Hamel基构造了一个反例,说明了即使凸函数在全空间有下界也不能得到函数的Lipschitz连续性.接着,在空间完备的情形下,运用Baire纲理论证明了,函数在某一球型邻域内均下半连续等价于函数的Lipschitz连续性.
简介:本文旨在给出Banach空间值Hardy—Lorentz鞅空间的共轭空间的完全刻画.首先,对B值鞅引入了一类新的广义Lipschitz鞅空间及“原子鞅”的概念;其次,对B值Hardy-Lorentz鞅空间建立了“原子鞅”的分解定理;最后,以此为工具证明了其共轭空间是广义Lipschitz鞅空间.所得结论将已有的相应结果由实值鞅推广到Banach空间值鞅的情况.
简介:研究D-Cchang等人引进的五个区域Hardy空间,刻划这些空间的原子分解和对偶空间,揭示了这些空间的内在联系。
简介:V447.32002032386提高CCD相机视觉定位准确度的算法研究=MethodtoimprovetheCCDcamera’sresolutionforapplicationinhighaccuracylocating[刊,中]/衣法臻,胡恒章,何平(哈尔滨工业大学控制学与工程系.黑龙江,哈尔滨(150001))//宇航计测技术.-2001,21(5).-57-62提出了一种提高利用CCD相机进行视觉定位的准确度的方法,对该方法的误差情况进行了分析,提出了减小误差影响的策略。对一个实例进行了研究,证明该方法可以极大地提高CCD相机的测量准确度。图5参
简介:术文讨论了加权Bergman空间到Zygmund空间(小Zygmund空间)的广义复合算子Cφ^h的有界性和紧性特征,得到了以下约结果:(1)Cφ^h是加权Rergman空间到Zygmund空间的有界算子和紧算子的充要条件;(2)Cφ^h是加权Bergman空间到小Zygmund空间的有界算子和紧算子的充要条件.
简介:讨论了Hardy空间上以非退化有界单叶解析函数的幂为符号的解析Toeplitz算子的换位.并且刻划了符号为三个Blaschke因子积的解析Toeplitz算子的约化子空间.