学科分类
/ 13
247 个结果
  • 简介:研究了具有变Hopfield神经网络的正不变集与吸引集.获得了正不变集与吸引集存在性的充分判据.

  • 标签: 神经网络 时滞 正不变集 吸引集
  • 简介:本文通过构造Lyapunov函数和利用不等式分析技巧,研究了具有时的细胞神经网络的稳定性,给出了与无关的网络渐近稳定的充分判据,该判据可用于细胞神经网络的设计与检验,有重要的理论意义与应用价值。

  • 标签: 细胞神经网络 LYAPUNOV函数 时滞 渐近稳定性
  • 简介:研究具有时的细胞神经网络的稳定性问题,通过构造合适的Lyapunov函数及不等式分析技巧,给出了细胞神经网络全局稳定的新的充分判据,这些结论推广了已知文献中的结果。

  • 标签: 细胞神经网络 Lyapunm 函数 时滞 全局渐近稳定性
  • 简介:研究了具的分层抑制细胞神经网络.利用不动点定理获得了若干判定该网络存在概周期解的新充分条件,改进和推广了已有文献中的相应结论.

  • 标签: 分层抑制细胞神经网络 概周期解 时变时滞
  • 简介:本文采用Lyapunov-Krasovskii泛函方法对一类变细胞神经网络的全局指数稳定性进行了研究,得出了一些关于DCNN全局指数稳定性的充分条件。

  • 标签: 变时滞 LYAPUNOV方法 神经网络 稳定性
  • 简介:在时间尺度上,通过使用线性动力方程的指数二分法、不动点理论和微积分理论,研究带有泄漏项的中立型细胞神经网络模型,获得了一些使其概周期解存在和全局指数稳定的充分条件,并将以前的结论在时间尺度上做了扩展.

  • 标签: 时间尺度 细胞神经网络 概周期解 指数稳定 中立型
  • 简介:利用查表确定标准正态分布的函数值非常有限,这给工程应用带来很多不便。文章讨论了基于神经网络计算标准正态分布函数值的方法、数学原理、网络构造和学习过程。示例表明,计算简洁、方便,准确率能达到10^-6。

  • 标签: 神经网络 近似计算 标准正态分布 函数值
  • 简介:链路预测是网络信息挖掘的主要研究内容,通过对网络结构和其他信息的分析,挖掘缺失的链接或预测未来可能出现的链接。链路预测在推荐系统、社会网络和生物网络分析中有着十分广泛的应用。本文首先介绍了基于公共邻居、路径和随机游走的8种常用的链路预测指标.并在此基础上提出了一种基于这8种指标线性组合的度量指标,并经过实验找出了较好的优化参数。然后,提出了基于这8种指标的神经网络模型.并分别基于Weka平台和FANN库进行了实现。在社会网络的4个公开测试集上的实验结果表明.基于FANN库的神经网络模型的预测结果最好,在4个数据集上最高的AUC值分别达到了0。95l8、0.9289、0.7480和0.8677,与单一指标最好的AUC值相比分别提高了3.92%、1.45%、7.06%和24.35%。

  • 标签: 社会网络 链路预测 神经网络 反向传播
  • 简介:复杂网络广泛存在于日常生活,首先.给出几类标;位的网络模型;然后,利用稳定性控制方法设计并实现了具有时与非耦合的复杂网络模型快速控制;最后.通过构造优化Lyapunov函数,讨论其模型的射影同步问题,得到了系统全局稳定的条件和有效的控制嚣.以实例数值验证其方法的可行性。

  • 标签: 时滞离散网络模型 射影控制 稳定性理论
  • 简介:本文讨论了一类满足Lipschitz条件的非线性系统的镇定与跟踪控制问题.基于非线性状态反馈控制器,利用Lyapunov—Krasovskii泛函和矩阵理论,得到了系统相关全局渐近镇定的新判据,并且保证了输出和状态跟踪控制的误差全局渐近收敛于零.本文推广了文献所得到的结论.因此,本文所研究的模型及所给出的判定条件更具有一般性和实用性.

  • 标签: 非线性时滞系统 渐近镇定 跟踪控制 状态反馈控制 时滞相关
  • 简介:我国证券市场股价波动表现出特有的混沌性质[1][2],具有局部随机与整体秩序[3]相容的特征.本文以2002年每隔十秒的上证指数高频数据[4]为例,以混沌理论为基础,从原始序列中构造出若干个新的时间序列,运用神经网络法[5]进行预测.预测结果表明,此方法能够较好地预测股票的走势,有望在股票交易中应用.

  • 标签: 混沌理论 神经网络预测 证券市场 上证指数 股票
  • 简介:在干扰大的外界环境中,传统滤波法对组合导航系统进行状态估计的精度难以满足要求,为此提出了引入Elman神经网络.描述了它的状态估计的设计方法,对如何获取训练样本及网络的训练算法给予了详细的介绍,并把优化后的算法与原有方法进行仿真对比.最后以INS/GPS组合导航系统为例,分别用传统滤波法与Elman神经网络法进行状态估计.仿真结果证明了该法的有效性和实用性.

  • 标签: 组合导航系统 神经网络 卡尔曼滤波 状态估计
  • 简介:以卷积神经网络为代表的深度学习算法在医学影像分析领域正引起广泛美注,并取得了令人惊叹的进步。为了进一步提高卷积神经网络在计算机辅助筛查肺结节应用的准确率,本文设计了2种改良的深度卷积神经网络,这些改进加快了神经网络的训练速度.有效地防止了算法的过拟合。相比只采用二维卷积核的其他检测模型,该模型能够有效地学习到CT影像三维重建后的图像特征。通过实验,改进的检测模型在LUNAl6数据集上的准确率明显好于其他模型,这种网络结构也可用于医学影像领域中其他三维图像的检测场景。最后,构建了一套适用于远程医疗的“计算机辅助肺癌筛查与诊断系统”,该系统能够自动检测出CT影像中肺结节,并给出结节的良恶性概率评估。通过该系统的应用,可以有效缓解放射科医生超高的劳动强度,提高阀片效率,服务更多患者;减少漏诊和误诊发生的次数,有助于提高肺结节的诊断准确率;从而促进我国肺癌早筛工作的推广。

  • 标签: 深度学习 卷积神经网络 肺癌筛查 肺结节 医学影像分析 计算机辅助诊断
  • 简介:本文针对某型陀螺启动特性进行了试验研究,在陀螺启动漂移特性试验数据基础上,用神经网络建立了启动漂移速率温度的非线性模型,并对模型进行了检验,证实了神经网络的有效性

  • 标签: 陀螺仪 启动漂移特性 神经网络 非线性模型 学习算法
  • 简介:研究了神经网络对课堂教学质量进行综合评估的原理、方法和过程,并成功地应用于实际中,结果表明该方法简洁,准确,并能克服各种人为因素.

  • 标签: 神经网络 综合评估 教学质量
  • 简介:本文利用BP神经网络建立起66例肝硬化治疗结果数据预测模型,并基于matlab得出预测结果。实验证明利用BP神经网络可有效地预测肝病治疗效果。

  • 标签: BP神经网络 MATLAB L—M算法
  • 简介:从模式识别的角度分析了搜索模式下水下运载体的重力匹配问题,利用模式识别神经网络实现重力匹配定位。在重力图匹配,以惯性导航仪指示位置为中心规划真实位置的网格点搜索范围,从参考重力图上提取相应一系列的重力数据,与对应网格点的位置一起定义成多个模式类,构造相应的模式识别概率神经网络,运用该神经网络将实时重力测量数据识别到某个模式类,对比模式类的定义确定载体位置。在实测重力图上对重力辅助惯性导航系统进行了计算机仿真研究。结果表明,在重力场特征显著区域该重力匹配算法能够有效减小厄特弗斯效应的影响,其导航系统定位误差小于一个重力图网格,匹配率在80%以上,匹配效果优于一般的相关匹配算法。

  • 标签: 组合导航系统 惯性导航 重力 厄特弗斯效应
  • 简介:建立用以评价地球大气健康度的模型,选择AQI作为健康度的指标,采用双层网络的形式构建模型。局部网络采用经粒子群算法优化的神经网络,而全局连接通过特定传播函数定义的反馈边将节点连接起来,并以上一年的结果作为输入,本年的结果作为输出,建立起一个自治系统。从拟合效果、关键节点和节点关系变化等几个方面测试了网络的性状。选择日本、印度、匈牙利等几个典型国家在1985—2008年的相关数据进行研究。结果表明,模型具备功能上的完备性和极好的灵活性,与历史事实符合得很好,可以为决策者提供有价值的支持信息。

  • 标签: 神经网络 AQI 自治系统
  • 简介:针对目前BP神经网络在实际应用中,网络结构难以确定以及网络极易陷入局部解问题,用遗传算法优化神经网络的连接权和网络结构,在遗传进化过程中采取保留最佳个体的方法,建立基于遗传算法的BP网络模型,同时通过实例说明该模型在降水预测中的应用,计算结果表明该方法的预测精度较高。

  • 标签: 短期气候预测 神经网络 遗传算法