简介:Richardson-Kolmogorov能量级串理论是湍流研究中最重要的基础理论,其中一个推论是能量的传输和耗散应当是均衡的,对应于耗散系数Cε为常数.然而近些年的实验及数值模拟都发现了不符合RichardsonKolmogorov能量级串理论的非均衡耗散律,即使在此区域内Reynolds数足够高,能谱满足Kolmogorov的-5/3标度律,Cε也不为常数,而满足Cε-ReI-m/ReL-n,其中m≈1≈n,ReI为入口Reynolds数,ReL为以积分尺度为特征长度的当地Reynolds数.近三年来又发现流向速度梯度扭率Sk和Lagrange速度梯度自相关的时间演化Φ'(ijij)也可以用来度量非均衡湍流现象,为非均衡湍流的研究开辟了新路.
简介:通过5-甲基-7-甲氧基异黄酮与盐酸羟胺的缩合制得中间产物4-苯基-5-(2-羟基-4-甲氧基-6-甲基苯基)异恶唑,然后经过光异构化反应合成了4-甲氧基-6-甲基-7a-苯基苯并吡喃并[2,3-b]氮丙啶-7-酮,并采用IR,NMR,HRMS和单晶X-衍射分析对其结构进行了表征.单晶X-衍射分析结果表明:标题化合物属于单斜晶系,空间群P2(1)/n.在其晶体结构中,存在着氢键及芳香堆积作用,这些作用将标题化合物分子组装成了三维网络结构.
简介:本文首先建立了具有变时滞和分布时滞的Lotka-Volterra两种群脉冲合作系统.然后通过应用Gaines和Mawhin叠合度定理,研究得到了具有变时滞和分布时滞的Lotka-Volterra两种群脉冲合作系统正周期解存在性的充分条件.
简介:为2017年"高教社杯"全国大学生数学建模竞赛C题"颜色与物质浓度辨识"给出了一种可行解法,按照赛题思路,给出了建模机理分析和数据质量评估指标,对赛题所给的数据进行了计算比较;并针对学生在参赛论文中出现的做法作了简要的说明与点评.
简介:在冲突谈判中,能获知对手偏好是掌握谈判主动性的重要条件。本文基于冲突分析图模型理论构建了一种获取对手偏好的方法。该方法通过深入分析冲突分析图模型中Nash、GMR和SEQ三种稳定性定义,利用反向思维,建立求解对手偏好最少约束条件的数学模型。该方法能让决策者在预知冲突结局的前提下,得到对手的全部偏好信息。以“云南曲靖陆良县铬污染”冲突事件为例,通过对该事件引发的冲突进行建模和偏好分析,在已知冲突最终结局的前提下,运用数学模型,省环保厅可以得到陆良化工企业的所有偏好序,使其在冲突谈判中做到知己知彼,同时也验证了该方法的可行性和有效性。案例分析过程可以从战略层面为谈判中的一方提供参考。
简介:本文在L^1空间上,研究了种群细胞中一类具总转变规则的Rotenberg模型,讨论了这类模型相应的迁移算子生成正C0半群,并且证明了该正C0半群是不可约的等结果.