简介:利用位移秩和交换Hessenberg矩阵代数给出结构矩阵的三角表示,并讨论在Toeplitz矩阵和Toeplitz+Hankel矩阵方面的应用.
简介:文章考察了相邻双侧边盖驱动方腔流动(即上壁面向右运动和左侧壁面向下运动)的三维线性整体稳定性.首先,采用Taylor—Hood有限元方法并经由Newton迭代过程计算得到双侧边盖驱动方腔流动的二维稳态基本流.其次,Taylor—Hood有限元在ChebyshevGauss配置点上进行离散,同时Gauss配置点也可以用于线性稳定性方程的高阶有限差分格式离散.然后,离散得到的矩阵形式的广义特征值问题可以结合shift-and—invert算法采用隐式重启Amoldi方法计算.最后,通过对线性稳定性方程特征值的计算,发现了一个最不稳定的驻定模态和两对对称行波模态.最不稳定的三维驻定模态的临界Reynolds数为Ree=261.5,远远小于二维不稳定的临界Revnolds数Ree2d=1061.7.通过画出这3类三维不稳定模态的流向扰动速度和扰动涡量的空间等值面图像,可以发现不稳定扰动位于稳态基本流的两个主涡区域,因此可以认为主涡区域是三维扰动失稳的主要能量来源地.
简介:引入点态非方常数的定义并给出其等价表达形式,同时给出点态非方常数在赋Luxemburg范数Orlicz序列空间和Orlicz函数空间的估计以及在1p和Lp空间的计算值.
简介:研究了一类平面齐五次系统{dx/dt=a50x^t+a41x^4y+a32x^3y^2+a23x^2y^3+a14xy^4+a05y^5,;dy/dt=b50x^5+b41x^4y+b32x^3y^2+b23x^2y^3+b14xy^4+b05y^5当其只有唯一的有限远奇点且具有三对特殊方向时的全局拓扑结构及系数条件.假设系统只有唯一的有限远奇点(O,O),不妨设bs。一0,其特殊方向由示性方程G(口)一0给出,引进poincare变换研究无穷远奇点,再根据定理中的系数条件,列出系统所有可能的无穷远奇点和特殊方向,并判断其类型,由此画出系统具有三对特殊方向时的全局相图.
简介:运用水热法合成了1个新的配合物[Ni(Phtpy)2](CH3COO)2(化合物1),(Phtpy=4′-苯基-2,2′∶6′,2″-三联吡啶),并通过X-射线单晶衍射方法确定了该化合物的晶体结构.结构分析表明化合物1属于三斜晶系,P-1空间群,晶胞参数a=0.90560(8)nm,b=1.10307(9)nm,c=2.02014(15)nm,α=94.3830(10)°,β=100.9830(10)°,γ=106.3120(10)°,V=1.8831(3)nm3,Z=2,R1=0.0872,wR2=0.1831.配合物中存在3种氢键和多种π-π相互作用,使其成为一个3D配合物.