简介:引入m阶邻居节点的概念,提出了一种基于m阶邻居节点重要度贡献的复杂网络节点重要度方法,并引入α和γ两个参数,用于调节节点重要度评估对节点自身特性及m阶邻居节点的依赖程度。综合考虑了节点自身及1到m阶邻居节点的重要度贡献。为检验算法的有效性,采用ARPA网络拓扑并针对算法在不同m取值条件下的节点重要度情况进行了评估。评估结果显示,与度值法、介数法、节点删除法等评估方法相比,具有更高的评估精度,能显著地区分复杂网络中节点之间的重要性差异,能准确地确定网络中关键节点,保证节点重要度评估的准确性;此外,实验结果还揭示了一个重要动力学现象,即当邻居节点所考察的深度m值大于网络的平均路径长度L时,该方法可得到可靠且精度较高的评估结果。
简介:为避免演化算法在求解多峰函数优化问题时对冗余空间的过度搜索,提高差异演化算法的搜索效率,提出一种新的基于空间收缩的种群灭亡差异演化算法(DEESC),通过最优个体收缩可行空间,用均匀设计方法反复初始化种群,并且讨论了DEESC的主要参数敏感问题.