简介:新一代网络环境下,用户与信息之间的交互耦合及其动态演化更加突出,并基于此形成了多样及多变的用户群组和信息群组。为了提高网络信息共享、传输及获取的效率,需要揭示用户与信息间的耦合及演化机制。本研究主要探讨其耦合机制的研究范式,尝试基于社会网理论揭示用户与信息间的耦合影响机制;基于概率图模型及多主体仿真揭示用户与信息间的关联演化机制;基于社会网理论构建用户群组和信息群组的模式识别模型。用户与信息间的耦合及演化机制的揭示,可丰富行为经济学、复杂性科学以及图书情报档案学等领域的相关理论,用户群组与信息群组模式识别模型的构建,有助于提高网络信息的社会化获取及个性化服务的效率。
简介:为了研究有限理性假设下出行者的自适应调整行为对交通网络分流的影响,利用累积前景理论结合演化元胞自动机建立了具有个体交互机制的多主体路径选择模型.在模型中将出行者划分为风险追求者与风险厌恶者,基于出行时间可靠性并借鉴元胞遗传算法的思想设计了具有异质特点的出行者动态参照点及其演化规则,使出行者个体能够依据决策环境的变化动态地调整自身的出行时间预算,更加符合出行者的实际行为特征.最后将多主体参照点演化规则与传统的相继平均算法相结合,求解路网配流.研究发现:演化模型较好地继承了传统模型中的路径分流特点;不同的出行者类型比例及出行者的信息接收程度是影响路网分流结构的重要因素.