简介:摘要:本文根据稠油分子键断裂的难易程度,将稠油分子键分成杂原子键和C-C键进行分析,并分析了分子键断裂之后的后续反应。关键词:稠油水热裂解层内降粘引言高粘度的稠油能够在催化裂解的作用下将粘度降下来,其中最主要的因素就是大分子的沥青质、胶质分子裂解成2个或多个小分子,并减少分子之间的氢键作用、分子长链之间的缠绕交叉作用、使得沥青质、胶质分子不缠绕成团,而是相对于以前更加均匀的分散在原油之中,从而使得原油粘度大幅度下降。在沥青质、胶质大分子的裂解过程中,键的断裂主要为2种:(1)杂原子键的断裂,包括C-S、C-N、C-O等C-R键的断裂。(2)C-C键的断裂。下面从这俩个方面对大分子键的断裂进行阐述。一、杂原子键的断裂在稠油催化裂解过程中的杂原子断裂由于C原子与S、N、O等杂原子极性不相同,所以属于极性反应。跟据大量的催化裂解实验结果分析,杂原子键中C-S键最易断裂,根据分析有以下3个原因:(1)从S、N、O的原子结构上分析。C、N、O原子属于第二周期,S原子属于第三周期。S原子电子层比N、O原子多一层,使得S-C键健长在3种杂原子中最长,相对原子核对成键电子的束缚力小……
简介:摘要:Freeman_Carroll法是用来计算固体物质热分解反应动力学参数较为常用的方法,本文对该法进行了改进,对转化率α求算公式进行了微分变换,发现dα/dT与dα/dWX满足一简单的数学关系式,而通过这一关系式可解决Freeman-Carroll求算动力学参数不准确的问题,对于一般的固体热分解动力学参数的计算具有普遍的意义。采用改进后的方法计算Mg(OH)2热分解活化能E为122kJ/mol,反应级数n为0.68。关键词:改进Freeman_Carroll法Mg(OH)2热分解动力学参数固体物质热分解动力学参数的计算目前普遍采用动态热分析法,其中以Kinserger法[1]和Freeman_Carroll法[2]最为常用,前者计算动力学参数数据较为精确,但实验工作量大、操作费时、测定手续繁琐,求算一组动力学数据往往需要作5条不同升温速率差热曲线,因而使用很不方便;而后者实验工作量小,只需做1条热重曲线即可获得所需的动力学参数,具有简易、快速的特点,但缺点是要求热重图要有精确的记录,另一方面采用该法测定活化能Ea时数据点上下浮动较大,导致准确性较差,本文采用后者计算氢氧化镁热分解动力学参数,针对该法存在的问题对该法进行了改进,对Mg(OH)2热分解动力学参数做初步的研究。