简介:Themetalorganicvaporphaseepitaxy(MOVPE)growthofindiumgalliumnitride(InGaN)hasbeendiscussedindetailtowardsthefabricationofsolarcell.TheInGaNfilmwithIncontentsupto0.4aresuccessfullygrownbycontrollingthefundamentalgrowthparameterssuchastheprecursorgasflowrates,temperatureetc.TheformationofmetallicInoriginatesfromthehighervalue(0.74)oftrimethylindium/(trimethylindium+triethylgallium)(TMI/(TMI+TEG))molarratiowithlow(4100)V/Ⅲweightmolarratiowhilethelowervalue(0.2)ofTMI/(TMI+TEG)causesthephaseseparation.Itisalsonecessarytocontrolthegrowthrateandepitaxialfilmthicknesstosuppressthephaseseparationinthematerial.ThecrystallinequalityofgrownfilmsisstudiedanditisfoundtobemarkedlydeterioratedwithincreasingIncontent.ThelatticeparametersaswellasthethermalexpansioncoefficientmismatchbetweenGaNtemplateandInGaNepi-layerareprimarilyconsideredasthereasonstodeterioratethefilmqualityforhigherIncontent.ByusingIn0.16Ga0.84Nfilms,ann+-phomo-junctionstructureisfabricatedon0.65mmGaNtemplate.Forsuchadevice,theresponsetothelightillumination(AM1.5)isobservedwithanop-ncircuitvoltageof1.4Vandtheshortcircuitcurrentdensityof0.25mA/cm2.Toimprovetheperformanceaswellasincreasesolarphotoncapturing,thedeviceisfurtherfabricatedonthickGaNtemplatewithhigherIncontent.TheIn0.25Ga0.75Nn+-pjunctionsolarcellisfoundbetterperformancewithanop-ncircuitvoltageof1.5Vandtheshortcircuitcurrentdensityof0.5mA/cm2.ThisistheInGaNp-nhomo-junctionsolarcellwiththehighestIncontenteverreportedbyMOVPE.
简介:第三产生同步加速器X光象自然材料一样为许多设计材料的微结构描述提供一个崭新的机会。这篇文章为结构的材料的学习表明三种技术的用法:微分孔的X光检查显微镜学(DAXM),三维的X光检查衍射(第3DX),和散布的同时的宽angle/small角度X光检查(蜡/萨克斯风管)。DAXM能与高空间、尖的分辨率在多晶的材料测量3D谷物结构。在使变形的材料,streaked衍射山峰能被用来在单个谷物分析本地脱臼内容。比作DAXM,第3DX能大批印射谷物材料更快速在损坏空间分辨率的情况下。当材料在变丑下面时,发展微观结构,为学习是很有用的。蜡/萨克斯风管对与不同类的结构学习材料合适,例如猛抛加强的合金。蜡和萨克斯风管揭示的结构的信息能为更深的卓见被合为材料行为。这三种技术的未来开发和应用程序将也被讨论。
简介:有alloying原子X=C,B,N,O和空缺的镁和它的合金的概括叠的差错(GSF)精力和表面精力用第一原则的方法被调查了。叠的差错精力上的alloying原子和空缺的占优势的减少效果在slip飞机附近在第一层从他们的位置被结果,这被发现。叠的差错精力是将近与纯镁一样当alloying原子和空缺被放在时第二,第三,第4,第5和第6层。O强烈减少Mg的GSF精力,这被显示出。alloying原子C,B和N增加表面精力,但是O和空缺减少Mg的表面精力。Mg和Mg合金的韧性被使用在表面精力和不稳定的叠差错精力之间的比率基于瑞斯标准讨论了。