简介:采集上海郊县1988年玉米样品50份、1989年玉米49份和小麦样品50份,用气相色谱分析法检测镰刀菌毒素脱氧雪腐镰刀菌烯醇(DON)和雪腐镰刀菌烯醇(NIV)用酶联免疫测定法测定样品中黄曲霉毒素B1(AFB1)。样本中DON、NIV和AFB1污染量中位数:1988年玉米样本分别为25.90ppb、12.70ppb和0.15ppb;1989年玉米分别为36.40ppb、13.70ppb和0.15ppb;1989年小麦分别为6.25、5.00和0.12ppb。1988年玉米样品中有26份同时检出AFB1、DON和NIV,共同污染率为52.0%;89年玉米样品的AFB1、DON和NIV共同污染率为59.2%(29/49);89年小麦为14.0%(7/50),可见黄曲霉毒素和镰刀菌毒素可共同污染粮食。另外,本调查分析中发现小麦和玉米中的DON和NIV污染量之间存在相关关系,而AFB1与这两种毒素间不存在相关关系。
简介:采用响应面分析方法,对红曲霉菌株(MonascusruberGMA4)固态发酵产MonacolinK的工艺条件进行优化研究,提高产MonacolinK的浓度,运用单因子实验筛选出可溶性淀粉和酵母粉为最适碳源和氮源,确定发酵产MonacolinK的最佳培养时间为20天,初始含水量为40%以及添加前体乙酸钠浓度为1.2%,通过全因子实验,对影响产MonacolinK的4个重要因素进行评估并筛选出具有显著效应的2个因子:初始含水量、乙酸钠。通过最陡爬坡逼近以上2个因子的最大响应区域后,采用CentralCompositeDesign(CCD)响应面分析法,确定产MonacolinK最佳工艺条件为:可溶性淀粉40g/L,酵母粉30g/L,乙酸钠14.6g/L,初始含水量51.2%,32℃培养3天,再26℃培养17天。在此条件下,MonacolinK产量达到15.49mg/g,比优化前条件:葡萄糖30g/L,蛋白胨20g/L,酵母粉20g/L,乙酸钠12g/L,初始含水量40%所得到的MonacolinK浓度11.03mg/g提高了40.4%。
简介:为探讨植物乳杆菌及不同pH值对黄曲霉生长与产毒的影响,将植物乳杆菌与黄曲霉孢子同时加入到MRS肉汤和先厌氧培养植物乳杆菌后再加入黄曲霉孢子;以乳酸将LTB培养基的初始pH值调整为3.0,4.0和5.0,以pH值为6.8为对照组,在LTB培养基中接种黄曲霉孢子悬液.上述试验均在28℃培养15d.在培养的第3、6、9、12和15天测定培养液中的pH值、黄曲霉毒素B1和黄曲霉菌丝重量.结果显示:植物乳杆菌可显著抑制黄曲霉生长(P<0.05),同时检测不到黄曲霉毒素B1.随着LTB培养液中pH值的降低,黄曲霉毒素B1的量增加,在pH3.0组,差异有极显著性(P<0.01),各组间黄曲霉菌丝量未见显著性差异.结果表明:植物乳杆菌可显著抑制黄曲霉生长与产毒;在pH值3.O~5.0范围内,乳酸可以刺激黄曲霉毒素B1的产生.
简介:现在大多数检测黄曲霉毒素的方法,如酶联免疫测试盒、免疫亲和层析净化荧光光度法等。都只能检测单一的黄曲霉毒素B1或黄曲霉毒素总量,而且检测限高,重复性和稳定性不好,难以得到理想的测试结果。本文主要研究啤酒样品经pH7.0磷酸盐缓冲溶液调节pH值后。用含有黄曲霉毒素特异抗体的免疫亲和层析柱净化富集,黄曲霉毒素交联在层析介质的抗体上,用吐温-20/PBS将免疫亲和柱上杂质除去.再以甲醇通过免疫亲和层析柱洗脱,洗脱液经C18柱分离,然后用液相色谱柱后衍生法,用荧光检测器进行检测。本方法可同时分离检测出黄曲霉毒素B1、B2、G,和G2,检测限可达0.2μg/L。
简介:为探讨植物乳杆菌ATCC8014和植物乳杆菌CGMCC1.103对包括寄生曲霉NRRL2999在内的5株曲霉孢子活性的影响,将曲霉孢子接种到植物乳杆菌24hMRS培养液中,28℃培养24h后检测孢子的活性.结果显示:植物乳杆菌ATCC8014和植物乳杆菌CGMCC1.103对5株曲霉孢子均有灭活作用.镜下观察植物乳杆菌ATCC8014将寄生曲霉NRRL2999的孢子灭活,使其不能发育成菌丝,故也不能生长.
简介:为了提高α-L-鼠李糖苷酶的发酵产量,利用高效液相色谱法检测α-L-鼠李糖苷酶活力,考察外加碳源葡萄糖、氮源及生长因子对棘孢曲霉JMUdb058固态发酵产α-L-鼠李糖苷酶的调控机制,并以之为依据优化培养基。研究结果表明,葡萄糖和淀粉对α-L-鼠李糖苷酶的产生具有代谢调节作用;外加氮源能大幅度提高α-L-鼠李糖苷酶的活力;相比用硫酸铵为氮源,用豆饼粉为氮源时,由于其中含有淀粉而导致酶合成量降低;磷酸氢二铵比其他铵盐和硝酸盐更能促进α-L-鼠李糖苷酶的合成。添加富含氨基酸的生长因子有利于α-L-鼠李糖苷酶的合成。棘孢曲霉JMUdb058发酵产α-L-鼠李糖苷酶优化后的培养基是:柚皮5g,磷酸氢二铵0.5g,酵母浸膏0.075g,水5mL,此时α-L-鼠李糖苷酶活力达到10.60IU/gds,比初始培养基的酶活力提高了84.67%,比其他文献报道的最高酶产量提高了1.5倍。优化后的培养基大幅度提高了棘孢曲霉固态发酵α-L-鼠李糖苷酶的活力,为该酶的发酵生产及开发利用提供了技术参考。
简介:在2008~2009年,使用超高效液相色谱(UPLC)结合荧光检测法(FLD),对237种样品的啤酒大麦、麦芽、啤酒花、麦汁和啤酒进行了赭曲霉毒素A(OTA)污染的分析。相比于其他常用的方法,UPLC法是一种具有低检测限和定量限(LOD和LOQ)的快速检测技术。啤酒的LOD和LOQ值分别为0.0003nWmL和0.001ng/mL,大麦或麦芽为0.05μg/kg和0.2μg/kg,啤酒花为0.16μg/kg和0.5μg/kg。赭曲霉毒素A在其中一种大麦样品(0.3μg/kg),一种麦芽样品(0.7μg/kg)和一种啤酒花样品(0.6μg/kg)中被检测到,对啤酒酿造过程中的OTA含量也做了检测。此外,对从当地商店购买的国内外啤酒样品也进行了分析,OTA在其中的39%啤酒样品中被检测到,水平介于0.001~0.0544ng/mL之间,只有一个啤酒样品中OTA含量达到了0.2438ng/mL。
简介:赭曲霉毒素A(OTA)是一种由赭曲霉和疣孢青霉产生的霉菌毒素,目前已在食品和饮料领域对其进行了分析。由于OTA的毒性,针对其在食品、饲料和饮料中的含量,欧共体发布了相关指南,一些国家也作出了各自的规定。本文主要阐述了一种检测啤酒中OTA的方法,它基于化合阴离子交换/反相提纯和液谱-质谱法的联合应用。这种方法与改进的标准方法进行比较,在加标啤酒样品的基础上进行验证;准确性采用统计工具进行检验(t-检验)。由于其良好的可重复性,再现性和有效性,此方法极有可能取代LC-FD(荧光检测)方法。