简介:摘要:本文简单介绍了空压机原理,对于空压机在启动时对辅助系统造成的冲击进行了原理性说明,并针对空压机启动带来的电流冲击介绍了几种设计方案,针对各个方案进行说明及优点及缺点分析,并提出了软启动器方案。以安哥拉内燃动车组为例说明空压机与软启动器配套应用方案的可实施性及实际应用情况。
简介:目的研究分析在小儿哮喘急性发作疾病中使用不同剂量布地奈德雾化吸入的治疗效果。方法将2018年1月至2018年6月在本院接受治疗的哮喘急性发作患儿中的88例设为研究对象,经电脑随机分组为观察组(44例)以及对照组(44例)。对照组中患儿使用0.5mg/次的布地奈德剂量常规雾化吸入,观察组中患儿使用1.0mg/次的大剂量布地奈德雾化吸入,分析两组患儿的症状体征消失时间情况。结果观察组中患儿治疗后其咳嗽、呼吸困难、哮鸣音以及喘息症状体征的消失时间均显著短于对照组(P<0.05)。结论临床上针对小儿哮喘急性发作使用1.0mg/次的大剂量布地奈德雾化吸入效果显著,用药后患儿的症状体征消失较快,值得推广。
简介:摘要随着经济和科技水平的快速发展,电力行业发展也十分快速。智能电网的关键部分之一是构建低功耗、高效率的监控网络,该网络需要支持数以百万计的智能电表或其它监控终端,其中,“最后一公里”成为制约当前智能电网发展的首要问题。使用无线通讯技术以及由此衍生的无线传感器网络能够满足较少节点的非实时数据采集和传输,然而当接入网络的智能电表或终端数量急剧增加、提高系统实时性要求,则产生的大量数据及其通讯将导致较大的网络时延并降低网络可靠性。在汇聚节点或区域基站采用压缩感知是解决该问题的有效方法之一,与传统的数据压缩算法相比,压缩感知方法的稀疏矩阵的维数明显小于原始数据矩阵维数,通过非线性重建算法能够获得比典型的线性回归方法更低的误差率。压缩感知已被应用一些电力系统中,如文献6对智能电网中路由协议和质量问题进行研究;在对智能电网文献综述中阐述了压缩感知在其中的应用发展情况;提出基于压缩感知的小区电网数据监控方案。
简介:摘 要 : 简要介绍了火力发电厂汽动前置泵推力装置改进技术的提出背景和应用原理,并结合某火力发电厂 1- 8号机汽动前置泵推力装置的改造成果和近年来汽动前置泵使用的实际情况,对汽泵前置泵推力装置改造技术在火力发电厂的使用,提供参考。 关键词 : 推力轴承 研究 改进 实施 0 引言: 某火力发电厂装机容量 8X300MW,汽机为亚临界、中间再热、两缸、两排汽凝汽式汽轮机。锅炉主给水泵及前置泵是采用沈阳水泵厂生产的各种型号水泵共计 44台。包括 80CHTA/4型汽动给水泵 2台, 50CHTA/6型给水泵 8台, 50CHTC/6型给水泵 12台 ,YNKN300/200型前置泵 22台, QG400/300前置泵 2台。本次研究的主要方向是针对汽动前置泵 YNKN300/200型和 QG400/300型前置泵,共计 16台汽动前置泵推力瓦易出现的安装繁琐和烧瓦问题进行研究,改进。 1 改造前设备现状: 给水泵厂家原始的汽动给水前置泵采用推力瓦平衡轴向推力。推力瓦要保证在油润滑条件下运行,必须使出油边的最小油膜厚度,符合设计值。这就要求推力盘有较高的精度和较低的粗糙度,如果推力盘的粗糙度高,则轴承摩擦损耗增大。推力盘如有伤痕或锈蚀等缺陷,则可能破坏油膜,甚至造成烧瓦 事 故。所以,推力盘研磨、推力瓦刮削以及对推力盘、推力瓦的检修调整工作就显得十分重要。另外,推力瓦之间相互高差一般控制在 0.02mm 之内,即要求推力瓦的平面度与推力盘的平面度相近才行。如果,推力盘与推力瓦的平面度不好,其偏差超过了最小油膜厚度,会破坏推力瓦与推力盘之间所建立的油膜。推力瓦就会在半干摩擦或干摩擦状态下运行,造成烧瓦事故或瓦面损坏。此外,推力瓦的受力也与它本身的平行度直接相关,只有接触面积大,才能使推力瓦承受较大的压力。如果,推力瓦凸凹不平,具有局部高点,受力集中,也会发生烧瓦事故或瓦面严重磨损,同时,轴头下部挂带小油箱,轴头油泵叶轮容易损坏脱节,造成供油不及时,也容易造成推力瓦磨损烧瓦事故。 2 整改思路: 针对汽动前置泵推力瓦易磨损断油,安装检修费事费力的现象,我们开始考虑是否能有一种新的推力装置代替原有推力装置,并将非驱动端供油小油泵去掉,由润滑油润滑改为润滑脂润滑,避免设备运行中易漏油的缺陷。经过实际调查论证,汽动前置泵结构形式为双吸泵,轴向推力不是很大,转速 1480转 /分,采用推力轴承能够替代推力瓦,滚珠型推力轴承为最佳选择,润滑方式有小油泵驱动润滑油润滑改为润滑脂润滑,有效的避免了设备在运行中易产生漏油的现象,完全能够满足汽动前置泵运行参数所需要求。这种滚珠型轴承推力装置优点是,结构简单,质量可靠,运行成本低廉,维护方便。 3 整改方案及效果: 新的轴承推力装置包括:轴承室、两个角接触球轴承、轴承背帽、泵轴和轴套,轴承室的的内部装设有两个角接触球轴承,角接触球轴承的后端设置有轴承背帽,角接触轴承的后端通过轴承背帽锁紧在所述泵轴上,角接触球轴承的上端有润滑脂加油孔,轴承室装设在泵轴上,泵轴上套有轴套。轴承室与泵轴通过骨架油封进行密封。 通过实施以上技术方案,具有以下技术效果:通过推力瓦的改造,使得原有的推力瓦、推力盘、轴头油泵以及冷油器、进出油管、冷却水管等全部由一对滚动轴承所代替,具有比较好的实效性。不但减少了设备的复杂程度,极大地方便了设备检修,降低了维护成本及停泵抢修降负荷运行所造成的巨大电量损失,更重要的是提高了设备安全运行的可靠性,消除了润滑油的渗漏污染,使得以往诸如轴承温度高、跑油、轴瓦磨损、渗漏点多、停泵抢修多影响电量等困难问题得以彻底解决。 4 具体实施方式: 如图 1所示: 图一 图 1为轴承推力装置的结构示意图。为了更好叫大家理解技术方案,下面结合附图对安装结构进行详细讲解。 这种新的推力平衡装置,如图 1所示,包括:轴套锁母 101,轴承室 102、泵轴 106、两个角接触球轴承 104、轴承背帽 101、轴套 107、骨架油封 105,角接触球轴承 104的上端为加油孔 103,所述轴承室 102装设在泵轴 106上,且轴承室 102的前端通过骨架油封 105与泵轴 106密封,轴套 107装设在泵轴 106上。 1.为了装配更加牢固,角接触轴承 104的后端通过轴承背帽锁紧在泵轴 106上。承受径向载荷,同时可承受一定量的轴向载荷,所以摩擦系数小,极限转速高,运行可靠,维护量小。 2.为了运行轴向转子不串动,整个轴承室 102所用的四根贯穿的螺栓 108固定在前置泵非驱动端的轴承架上。轴承室 102两个角接触轴承 104,保持规定的标准推力间隙 15~ 20um。两个角接触轴承 104,用轴承背帽 101轴向固定在轴 106上。以轴承室 102为标准,通过调整轴套 107的尺寸来确定角接触轴承 104的位置。 3.为了装配起到密封作用,轴承室 102的前端通过所述骨架油封密封 105在泵轴 106上。 4.为了装配起到方便加油的作用,在轴承室 102上,两个角接触轴承 104上部开一加油孔 103,用以定期加油,平时用丝堵封堵。 5.推力轴承平衡装置拆卸、维修方便,只需拆除连接用的四条螺栓 108,便完成了轴承室 102与轴承座的分解工作。角接触轴承 104与衬套 107的分解,卸掉轴承锁母 101后,便可取下角接触轴承 104与衬套 107。 5 结束语 检修人员通过查找资料,针对设备经常发生的问题,进行准确、及时、有效的分析,找到造成设备缺陷及检修繁琐的根本原因,并及时对设备进行优化改造,通过以结构简单,质量可靠,运行成本低廉,维护方便的新的推力装置代替了结构复杂,运行不稳定,维修繁琐,易出现故障旧的推力装置。保证了设备正常运转。消除了问题,为汽轮发电机组的安全稳定运行提供了有力的支持,有利于机组的安全稳定运行,对实际生产起到了一定的借鉴作用。 参考文献: [1] 《大型火电机组检修实用技术丛书汽轮机分册》郭延秋主编 [2] 《汽轮机检修检修工艺规程》大唐国际张家口发电厂编 [3] 《机械设计手册 -轴承》成大先主编 作者简介 :母成革 男 ( 1968—— ),张家口发电厂汽机车间专工,高级工程师
简介:近年来,随着社会的发展,我国的现代化建设的发展也有了很大的改进。国民经济的发展,空分装置的规模日趋大型化,离心空压机组作为空分装置的核心设备,为其提供原料气及能量,处理量亦随之向着大流量、高压力、高转速、大功率的方向发展。因此,在空压站的设计中,合理布置离心空压机组及相关管道,对减少后期维护成本、减少能耗等方面非常重要。关键词空分装置;离心式空压机;空气管道设计引言离心式空压机是整个空分装置核心设备之一。原料空气经过滤后,由离心空压机压缩至一定压力后送空分装置下阶段工序处理。目前国内空分装置朝着大型化方向发展,离心式空压机的空气处理流量较大,进出口管道基本在DN1000以上,并且由于空压机出口一般不设置后冷却器,空压机出口空气温度较高,则空压机空气管道设计过程中,需综合考虑管道振动、管道补偿以及管口力、力矩等因素,管道合理、准确设计,对于离心式空压机稳定运行起到关键作用。1空气入口管道的设计离心式空压机空气入口管道与空压机为水平连接,管道设置有检查人孔。入口管道与空压机入口间设置有膨胀节(橡胶材质),从而减少空压机自身振动对入口管道带来的影响。入口管道一般为碳钢材质,为防止后续生产过程中,入口管道内部锈渣吸入空压机,对空压机造成损坏,入口管道安装时,管道内表面需进行严格的除锈,管道内壁需光滑清洁,表面应显示均匀金属光泽,除锈等级不低于Sa3。如投资允许,空压机入口管道宜选用不锈钢材质。2空压机的管道设计离心空压机上方及四周的管道,不能妨碍压缩机的吊装及维修,管道不应布置在转子抽出范围内。2.1气路系统管道设计2.1.1吸人口管道设计在压缩机的吸人口管道上一般都需要安装空气过滤器。空气通过空气过滤器进人压缩机时,在满足进口管道应力以及压缩机管嘴允许受力的条件下,管道要尽量地短而直,这样可以减少进口阻力,吸气管总长度不宜超过25米。管道设计时要按优先考虑采用自补偿的方式,当无法满足时,方可采用补偿器。常规配置成碳钢材质管道,部分机组供货商要求为不锈钢材质。在采取碳钢材质管道时,应采取氢弧焊打底处理。2.1.2排出口管道设计空气出压缩机后,被压缩成饱和、带压气体进人后冷却器或直接进人预冷系统的空气冷却塔中。压缩机排出管道上的止回阀应尽可能地靠近压缩机,当管道布置在地面上时,管底标高距离地面的最小高度为600mm。管道设计时最好不要在压缩机管口上附加管道重量。如果驱动机为蒸汽机,则需要在蒸汽排出管上安装膨胀节,并且使配管的热膨胀力传不到压缩机上。设计中需要注意的事情是进人空气冷却塔的管道应在竖直方向上配置气封,常规高度为3一4米。此管道通常不要求进行振动分析,但必须进行管道柔性分析,并应符合机组管口受力的要求。2.2水路系统管道设计空气压缩机及其级间冷却器、驱动机为水冷式电机的的冷却水管路,因而其介质、设计温度及设计压力,可按照循环水管路设计。水管路布置时,可布置在压缩机侧边的平台下方,亦可靠近地面布置,但不能影响设备的检修、操作空间及通道。在空气压缩机的总排水管道上,必须装有水流观察装置或者流量控制器。2.3油路系统管道设计空气压缩机油路系统一般是指机器轴承、增速器的齿轮及轴承、联轴器和驱动机轴承等的润滑。润滑油系统应接有高位油箱及辅助油泵。压缩机润滑油的供油和回油宜各公用一根管线,总管的末端应设有法兰盖,以便清扫,且回油管道应坡向油箱,其坡度一般根据制造商的要求来确定,通常最小坡度为4%。油路管道应采用法兰连接,并分段设置,每段管道的长度应不大于4米,且弯头不宜超过两个油路管道上的阀门宜采用法兰式阀门。2.4加强运行前与运行中的管理在离心式空压机运行前,应做好以下工作,保证离心式空压机运行状态正常。首先,应对机组的启动条件详细检查,既要查看是否有完整无损的设备零部件,同时还应侧重于对设备上的相关数据和一次维修的具体原因进行核对。在试运行过程中,还应对相应的指标参数是否达标进行观察;其次,一旦空压机出现振动故障,需要对电气仪表和灯管信号进行核对,以免轴承温度过高和过低。同时,由事故连锁处理系统实施有效的保护。在对润滑系统进行观察时,需要对辅助装置是否有正常的运行指标进行重点关注。察看油位是否与运行设备需求相符,是否有畅通的油路等;最后,还应结合开启指令或关闭指令,注重对各类闸门的检查,并作出相应的动作,对其正式投入运行提供保障.3空分装置离心式空压机诊断与处理方法3.1叶轮故障的处理导致叶轮损坏这一故障的主要原因就是异物的进入,一级吸气管道当中所存在的异物主要就是由于吸气滤芯破坏,所以在开展运维工作的过程中应该对反吹装置进行定期的检查,确保吸气滤芯完好无损。二、三级吸气管道当中的异物主要就是由于冷却器损坏、Y型密封胶条损坏、冷却器刺片损坏的情况下将异物吸入到了吸气管道当中,并与处于高速旋转的叶轮发生碰撞,从而也就会引起叶轮损坏这一故障。所以应该每6个月对其进行一次检查,在检查的过程中应该用手去摇动Y型密封胶条,如果感觉其弹性已经丧失,应该对其进行及时的更换。三级扩压器导流片在使用的过程中容易出现风蚀的问题,在这一问题的影响之下就会使得导流片的残片脱落,所以应该定期对叶轮、蜗壳、导流片进行检查,同时还需要认真的查验导流片的风蚀情况,当检查的过程中发现导流片已经出现了风蚀,应该利用激发冷焊的方法进行及时的修复和更换。3.2转子故障的处理在将叶轮装配到转子上面之后,动静平衡的精度要求是非常严格的,本文研究的对象在出厂的时候已经完成了高速动平衡检测,在使用的过程中,通过吸气过滤芯穿过的非常细微的粉尘与冷凝水相结合之后,与处于高速旋转的叶轮发生碰撞,使其非常牢固的附着在了叶轮的表面,从而使得转子原有的动平衡精度降低。在对叶轮进行清洗的时候,首先应该利用专用的清洗剂将其湿润,10-15min之后发现处于叶轮之上的垢污已经软化之后利用牙刷状的钢丝刷细致的清洗叶轮的每一个部位,然后利用清水进行反复的冲洗,从而有效预防残留在叶轮表面的清洗剂与空气当中的杂质或者叶轮上的润滑油发生化学反应,进而形成比较难溶的物质,进一步影响转子动平衡的精度。如果在检修的时候没有专业的清洗剂,可以利用吸油烟机的清洗剂,如“威猛先生”等代替。如果在清洗作业结束之后,发现转子振动仍然比较大,就需要将其返厂或者委托可以进行真空高速动平衡的厂家对其实施高速动平衡处理。在进行动平衡的时候需要签订动平衡的精度以及质保协议,从而有效预防动平衡精度比较低而导致的叶轮、轴承等零部件损坏的问题出现。结语离心式空压机空气管道设计过程中需综合考虑空压机设备以及管道自身等多方面因素情况,管道走向、支架类型以及补偿器类型设计需通过应力计算软件验算校核,避免管道失重、管道应力集中、管口力超标等情况的发生。离心式空压机作为空分装置的原料空气的供应源头,离心式空压机安全、正常运行是保证整个空分装置稳定运行的关键,而空气管道合理、准确的设计也是空压机正常运行的必要条件之一。参考文献1罗宇,张迎春,陈万里.探讨化工设计中的管道应力分析J.科技信息规划与设计版,2012(11)332-359.2张小牛,涂心宇.DA200-61型离心空压机异常振动故障的分析与处理J.机电产品开发与创新,2012,25(02)68-69.3张春芳.H125—7/0.98型离心空压机振动测量在故障诊断中的应用J.辽宁工学院学报,2001(04)22-24.