简介:设计了航空液压泵源健康管理系统硬件平台,通过对液压泵源关键部件进行故障模式及其影响分析(FMEA),解决了健康管理系统中的传感器选型及优化布局问题。后续故障设置及故障诊断试验表明,该硬件平台通过尽量少的传感器,较全面的采集了泵源系统的故障信息,实现了预期功能。
简介:在FPGA进行硬件加速的基础上,采用10位的高速A/D转换器设计并实现了采样率5Gsps(Gigabitsamplespersecond)、带宽2GHz的宽带数字接收机的硬件实物原型.在所设计的硬件平台上,完成了FPGA硬件加速的FFT算法实现和超分辨率的信号检测算法实现,进而提高了接收机在接收多个信号时的瞬时动态范围(IDR).该设计较之前代在集成度、功耗、体积和动态性能等方面均有显著提升.经实验验证,在高达2GHz的频率范围内,接收机同时接收两个信号时,通过硬件加速的4096点FFT计算,其瞬时动态范围最大可达52dB.
简介:介绍了CAQN网络检测系统的应用和特点,解决了人工测量产品不精确的现状。对产品质量实施有效控制,通过数据自动采集、计算,来实现实时监控、数据查询、质量分析等功能。
简介:目的:通过对志愿者观看3D影片之后的脑电信号进行主成分分析,选取最能代表立体视觉疲劳度的主成分,运用BP神经网络对疲劳等级进行建模,提高对疲劳度等级的预测准确度。方法:采集15名志愿者观看五部不同3D影片前后的脑电信号,先对脑电信号进行疲劳度分级并选取特征通道;再对特征通道的脑电信号进行主成分分析选取影响最大的特征主成分,利用BP神经网络进行建模,根据建立的模型对立体视觉引起的疲劳等级进行预测,将预测结果与已知的疲劳等级进行对比。结果:根据文献中的疲劳等级将实验结果分成三个等级;据累计贡献率超过90%选取的前四个主成分建立的预测模型,准确度达95.4%。结论:运用主成分分析和BP神经网络的方法对立体视觉疲劳度进行预测,预测准确度较高,与直接根据脑电特征参数建立模型的方式相比简便和准确,这一方法对立体视觉引起的疲劳度分级及预测提供了新的思路。
简介:小世界是一种以较低的连接和能量成本实现高效的信息分离与整合的网络结构,而人脑网络具有显著的小世界特性。在弥散张量成像(diffusiontensorimaging,DTI)脑网络的研究中,如何有效地量化和评估网络的小世界属性依然是研究中存在的一个关键问题。在研究文中,我们首先概括了已有小世界属性评估指标及其存在的问题,随后提出了一种新的基于网络全局效率和局部效率的小世界属性评估指标。为了验证该指标的有效性,我们基于75个中老年人的DTI脑网络对其进行了应用与评估。与传统指标相比,该指标对研究对象的年龄变化更敏感,并与多项认知评估量表的结果存在显著相关。网络节点随机化和网络失连接这两种攻击测试的结果也表明,新指标在DTI脑网络的研究中具有较高的准确性和稳定性。