简介:目的探索Cookgas和Fastrach插管型喉罩联合光索在预测重度困难气道管理中的应用,为临床处理重度困难气道管理的问题提供依据。方法本院选择于2016年1月至2016年12月接受治疗的预测重度困难气道患者104例作为观察对象,按数字表法分为Cookgas插管型喉罩联合光索组(CILA组)和Fastrach插管型喉罩联合光索组(FT-LMA组),每组52例,并对两组患者的临床资料、手术之前的困难气道评估及声门的暴露情况进行分析。结果两组一般临床资料(年龄、性别、体重及身高)相比的差异没有统计学意义(t=1.562,P=0.092;χ^2=1.448,P=0.104;t=1.520,P=0.081;t=1.604,P=0.095)。CILA组的张口度明显小于FT-LMA组,并且差异具有统计学意义(t=3.935,P=0.002);CILA组的Mallampti分级Ⅲ级之上的例数明显多于FT-LMA组,并且差异具有统计学意义(χ^2=4.852,P=0.004);CILA组的预测困难面罩通气例数明显多于FT-LMA组,并且差异具有统计学意义(χ^2=4.276,P=0.001)。CILA组4级声门的暴露例数显著低于FT-LMA组,且差异有统计学意义(χ^2=4.921,p=0.003)。结论应用CILA和FT-LMA在预测重度困难气道管理中具有高效安全的功效,CILA插管的成功率更高,操作更为便捷,具有较高的临床应用价值。
简介:软件的图形用户界面(GUI)的视觉设计影响着用户的使用体验.在没有既定标准的情况下,测试人员对GUI评分的主观性和大量的重复性工作,会造成GUI测试的评分偏差和效率低下.针对上述问题,本研究工作构建了基于云平台的软件GUI自动测试系统,分别使用HOG+SVM模型和AlexNet模型对GUI图像进行特征提取并分类.考虑到软件GUI数据样本量小,提出利用迁移学习策略改善AlexNet网络的性能.针对用户的多样性和算法对计算性能的需求,GUI自动测试系统部署在云平台上,用户可以对软件GUI进行实时评估.实验证明,系统用于GUI自动测试具有良好的性能,并且可以避免主观因素的影响以及减轻软件测试员的工作量.
简介:他们都说,湖南路可能是全上海最安静文艺的一条小马路,它与世无争。可一旦推开湖南路的门,你会发现“与世无争”算什么,世外桃源才是它的本真。天生无畏,才能打开新的天地。你们一定会觉得很奇怪,这条长不过1025米的蜿蜒小马路,哪里来的门?你们可知,几乎沿路的每一扇大黑门背后,都有一段故事。如果你没有勇气推开它们,我不知会错过了多少风景。所以,这一次我们驾驶着奔驰GLA,去探一探湖南路的美。让GLA天生无畏的个性,给予我们推开大门的勇气,寻一寻湖南路背后的桃花源记。