简介:采用气氛烧结技术制备NiFe2O4-xNiO复合陶瓷材料(x为复合陶瓷中NiO的质量分数,%。x=0、5、10、17、25),并以该材料作阳极进行960℃的铝电解实验。分析烧结体的显微结构和物相组成以及电解试样的表层形貌与成分,研究NiO的添加对NiFe2O4陶瓷烧结性能和电解腐蚀性能的影响,并对该材料的烧结机制和熔盐腐蚀行为进行探讨。结果表明:氮气气氛下1300℃烧结的NiFe2O4-NiO复合陶瓷存在NiO和NiFe2O4两种物相,NiO相含量高于理论值;NiFe2O4陶瓷的相对密度为98.54%,添加NiO后复合陶瓷材料的相对密度有所下降,但仍保持在95%以上;电解过程中阳极表面形成不含NiO相的致密保护层,阻止电解质熔盐的渗透;保护层厚50~80μm,为含Al的尖晶石NiFe2O4相;随着NiO含量增加,阳极表面的致密层变得越发不平整。
简介:采用非水溶液溶胶-凝胶法,并结合高温碳热还原法制备锂离子电池用高可逆容量的Sn-C复合负极材料,通过调节Sn源与炭源的比例及碳热还原过程中的升温制度来控制金属Sn的粒度和Sn-C复合材料的结构形态。借助XRD、EDS、SEM、循环伏安及恒流充放电测试对材料的物化性能进行表征。结果表明,当Sn源与C源质量比为80:20、还原温度为800℃时,纳米级金属Sn均匀紧密地分布在无定形热解炭基体中,形成良好的纳/微复合结构,此时复合材料性能相对最优;该复合材料在电流密度为100mA/g,首次可逆比容量为637.9mAh/g,循环30次后充电容量保持在372.5mAh/g以上,第二次循环库伦效率达到97%以上。
简介:以不同纤维体积分数(21%、26%、32%)、不同布毡质量比(3:1,2:1,1:1)的针刺整体毡为预制体,采用化学气相渗透法(Chemicalvaporinfiltration,CVI)制备平板炭/炭(C/C)复合材料,研究预制体结构对CVI致密化过程的影响。结果表明:随纤维体积分数增加,整体毡的增密速率及最终密度都逐渐减小;布毡比对增密速率及最终密度影响很小。材料网胎中热解炭圆壳厚度沿材料厚度方向呈内部小、两侧大的对称分布;增加纤维体积分数或增加布毡比,材料内部的热解炭增厚程度随之减小。纤维体积分数为21%的预制体最适宜采用CVI工艺进行增密,增密80h密度达到1.69g/cm3,热解炭生长均匀。
简介:在MM-1000型摩擦试验机上,对炭/炭复合材料分别在氮气和空气中模拟正常着陆能量条件下的摩擦磨损行为进行测试。结果表明:在氮气中,炭/炭复合材料的摩擦因数较高,达到0.32~0.4,磨损率较低,质量磨损率为18mg/次,线性磨损率为1.4μm/次;在空气中,材料的摩擦因数较低,为0.2~0.3,但磨损率较高,质量磨损率为48mg/次,线性磨损率为3.8μm/次。磨损表面及磨屑的SEM形貌表明:在空气中,材料摩擦表面易形成炭纤维、基体炭相互脱离的磨屑,其主要磨损机制为氧化磨损;在氮气中,则有纤维与基体炭连接良好、大尺寸的磨屑出现,主要磨损机制为磨粒磨损和粘着磨损。
简介:利用双喷嘴扫描喷射成形技术制备27%SiAl、42%SiAl、50%SiAl等3种Si-Al合金电子封装材料,并对该材料进行热等静压致密化处理。研究合金沉积态和热等静压态的显微组织,测定合金的热膨胀系数、抗拉强度及抗弯强度,利用扫描电镜研究其断裂机制。结果表明:沉积态Si-Al合金的硅相呈均匀弥散分布。随含硅量增加,合金凝固区间增大,初生硅相的数量增多,平均尺寸增大,由全部颗粒状分布逐渐演化为呈部分颗粒、部分骨架状分布,这种均匀弥散分布的结构有利于降低合金的热膨胀系数。27%SiAl、42%SiAl、50%SiAl合金的热膨胀系数连续可控,室温至200℃分别为14.76×106、9.75×106、9.29×106/K。随硅含量升高,材料的抗弯强度和抗拉强度呈下降趋势。27%SiAl合金的平均抗拉强度和抗弯强度分别达到196MPa和278MPa,伸长率为9.5%。42%SiAl与50%SiAl的平均抗拉强度与抗弯强度都接近,分别达到140MPa及220MPa,伸长率小于1%。断裂方式由以铝相的韧性断裂为主逐渐转变为以硅相的脆性裂为主。
简介:以雾化Fe85Si2Al6Cr7粉和溶胶凝胶法制备的W型六角晶系Ba1Co0.9Zn1.1Fe16O27铁氧体粉末为原料,通过高能球磨复合改性得到FeSiAlCr合金/W型六角晶系Ba铁氧体复合粉体。采用X射线衍射仪(XRD)和扫描电镜(SEM)对该粉体的微结构和形貌进行分析和观察,利用微波矢量网络分析仪系统测定粉体试样在2~18GHz频段内的复介电常数和复磁导率以及吸波涂层试样板的吸波性能,研究该复合粉体的微波电磁特性和电磁损耗性能。结果表明,FeSiAlCr合金/W型六角晶系Ba铁氧体复合粉体颗粒保持W型铁氧体的六角片状晶粒形貌和微结构;其ε′、ε″、μ′和μ″均高于W型铁氧体而低于Fe合金的对应值;FeSiAlCr合金含量与复合材料的磁损耗和介电损耗的相对强弱密切相关,Fe合金含量适中的复合材料,其吸波涂层厚度为2mm时,在2~18GHz全频段的吸波性能高于20dB,峰值点达50dB。