简介:上海VLBI相关处理中心引进了一款国外新近研发的VLBI相关后处理软件PIMA,它在相位校准、复带通校准和条纹搜索等方面具有独到的优势,特别适合于射电源的成图和绝对天体测量。以亚太空间地球动力学计划(AsianPacificSpaceGeodynamics,APSG)测地VLBI观测为样本,介绍了PIMA软件及配套数据分析软件VTD/Post—Solve的特点和处理流程。对PIMA获得的观测量文件以及国际VLBI天体测量和大地测量服务(InternationalVLBIServiceforGeodesyandAstrometry,IVS)常规数据处理获得的观测量文件,分别进行了台站坐标和射电源位置参数解算。二者的解算结果在测量误差范围内一致,且在低信噪比情况下,PIMA获得了更多的观测量。后续的APSG观测将包括更多数量的微弱射电源。PIMA软件有望在此类数据处理中发挥重要作用。
简介:水深测量是测量中常见的工作,涉及到测深、定位、姿态等数据的融合处理,为了得到高质量的数据,需要采用合适的数据采集软件,并针对测量数据进行有效的数据检查和质量控制.提出了一个“好”的数据采集软件所应具备的基本特征、如何进行质量控制等问题,提出了水深测量软件必须具备的关键功能、水深数据中空间参考系、位置精度、时间精度、数据完整性等质量因子的检查和质量控制方法,同时以HYPACK软件为例,针对其数据格式提出了采用高级语言编程,开发出了数据检查和质量控制程序,并与传统的方法进行比较.研究结果表明,开发有针对性的水深数据检查和质量控制软件不仅能显著提高工作效率,进行科学的精度评价,也能解决和修复测量数据中的参数错误等问题.
简介:以山东省首部X波段全固态双线偏振多普勒天气雷达724XSP观测的几次降水过程资料为例,与济南站多普勒天气雷达(CINRAD/SA)资料进行对比分析,并利用XSP雷达观测的层状云降水资料进行偏振参量的质量分析。结果表明:XSP雷达波束在穿越层状云云体时的衰减比较均匀,与SA雷达探测的云体结构比较接近,但XSP雷达对45dBZ以上强回波的探测能力较差,尤其探测冰雹云云体结构时二者差别较大。对偏振参量分析发现,当SNR〈10dB时,ZDR、CC、ΦDP和KDP等偏振参量受噪声影响明显,误差较大不可信;当SNR位于15-23dB时,ZDR和CC的测量值有明显波动,质量较差;XSP雷达的ZDR测量值较理论值偏低0.5dB;ΦDP和KDP资料受衰减影响较小,当SNR〉10dB时,质量比较可靠。
简介:通过对冷湖气象站2014年6月至10月DZZ4型新型站(现用)与Milos500自动站(备份)5个月的对比观测资料.用粗差率、对比差值、一致率等统计方法进行了资料的对比差异分析,得出观测资料的完整性较好,两套自动站仪器观测的风和地温要素资料存在一定的差异,其他要素观测资料一致程度较高,在风速和地温的资料应用中,应进行订正处理。
简介:为了探讨风廓线雷达资料的可用性,对2013年9月—2015年10月青岛站和济南站的风廓线雷达与L波段探空雷达测风数据进行相关、误差及有效样本比率分析。结果表明:(1)济南站和青岛站绝大多数高度层00:00和12:00风廓线雷达与L波段探空雷达的水平风速显著正相关,通过α=0.05及以上信度检验;(2)济南站00:00和12:00,晴天1.5km以上及雨天0.64km以上大多高度层风廓线雷达的水平风速比L波段探空雷达偏小约2m·s^-1,且当风廓线雷达与L波段探空雷达水平风向差≤20°时,有效样本比率基本在70%以上,资料质量很高;(3)青岛站00:00和12:00,6.48km以下大多高度层风廓线雷达探测的水平风速比L波段探空雷达偏小2-4m·s^-1,水平风速资料可用,但当2部雷达风向差≤20°时,有效样本比率仅为20%,海陆风及2种仪器的布设距离是水平风向差异的主要原因。
简介:产能测试资料分析方法基本包括两类三种,即二项式和指数式产能分析的压力分析方法、压力平方分析方法和拟压力分析方法。由于各气田的地质情况不同,尤其是地层压力不同,在实际应用中存在一定的混乱状况。从气体渗流的基本微分方程出发,论证了压力分析方法、压力平方分析方法和拟压力分析方法的适用范围。运用根据三种形式的气体渗流微分方程建立的三种形式的产能评价方法,即拟压力法、压力法、压力平方法三种产能评价方法,对高压气井的产能进行评价分析,分别对比了其绝对误差和相对误差。通过分析认为,在对高压气井进行产能评价时,拟压力方法是精确的;压力方法存在一定的误差,但误差不大;压力平方法存在误差,且误差较大,不应用其对高压气井进行产能评价。
简介:基于CloudSat-CALIPSO(CloudSat–CloudAerosolLidarandInfraredPathfinderSatelliteObservations)卫星观测资料,分析了全球总云量和8类云的云量、云底高、云顶高、云厚度的水平和垂直分布。分析结果表明,全球平均总云量为66.7%,其中卷云(Ci)和层积云(Sc)云量之和与其他6类云量总和相当,是全球云量最多的两类云。积状云云量呈现从赤道向极地递减的特征,层状云则相反,反映了二者不同的生成环境,同时下垫面地形和天气系统也严重影响云的分布。8类云的高度及厚度特征有显著差异。Ci的云底高度和云顶高度都较高,厚度则较薄;高层云(As)和高积云(Ac)的云底高度和云顶高度都位于大气中层,但As比Ac出现的高度高且厚度大;层云(St)、层积云和积云(Cu)的云底高度和云顶高度都很低,属于薄的低云;雨层云(Ns)和深对流云(DC)云底较低但云顶伸展很高,归属于厚云类。总体而言,海洋上云底高度较陆地低;赤道等大气不稳定地区,云底较高,云厚度较大;高原地区则表现出"高云不高,低云不低,云厚较薄"的特征。