简介:博格达三个山地区基性岩墙地球化学研究显示,该岩墙属亚碱性系列,为岩浆高度演化产物,轻稀土富集,不相容元素Ba,La,K相对富集,高场强元素Nb,Th,Yb相对亏损,Ti亏损不明显,Nb/Ta(平均14.1)、Zr/Hf(平均35.99)比值与原始地幔Nb/Ta(17.8)、Zr/Hf(37)比值相似,(Th/Nb)N的值大于1,Nb/La比值小于1,表明该岩墙的岩浆源自地幔,且在侵位过程中受到地壳物质的混染。本区基性岩墙的LA-ICP-MS锆石U-Pb加权平均年龄为(322.1±6.5)Ma,表明是博格达造山带岩石圈拉张减薄时的产物,反映晚石炭世早期博格达造山带处于岩石圈拉张的构造环境与动力学背景。
简介:使用维多利亚大学的地球系统模式进行模拟,选取1800-2500年间较高的CO2浓度情景(RCP8.5),分析由于CO2增加引起的气候变化对海洋碳循环的影响.当气候敏感度为3.0K时,相对于无气候变化,到2100年,由于大气CO2增加造成的气候变化导致海表面温度升高2.7K,北大西洋深水流量减少4.5Sv,海洋对人为碳的年吸收减少0.8PgC;比较人为溶解无机碳在海洋中的垂直累积分布,发现气候变化对海洋吸收大气CO2的影响在北大西洋区域最明显.1800-2500年,相对于不考虑气候变化的情景,模式模拟的气候变化导致整个海洋对人为碳的累积吸收总量减少23.1%,其中北大西洋减少32.0%.此外,比较不同气候敏感度(0~4.5K,间隔为0.5K)的模拟结果发现,气候敏感度越高,气候变化对海洋吸收CO2能力的抑制作用越明显.
简介:利用2个关于大西洋经向翻转流(AtlanticMeridionalOverturningCirculation,AMOC)的指数:AMOC指数(15oN~65°N、深度为500m以下的AMOC的最大值)和AMOC扩展指数(15°N~65°N、深度为2000~2500m的AMOC的最大值),研究了耦合模式FGOALS-g2(Grid-pointVersion2ofFlexibleGlobalOcean-Atmosphere-LandSystemModel)中的AMOC在CMIP5(CoupledModelIntercomparisonProjectPhase5)的3个典型浓度路径(RepresentationConcentrationPathways,RCP)(RCP2.6、RCP4.5和RCP8.5分别对应于2100年时490、650和1370ppm的CO2浓度水平)下的响应问题,发现:在RCP2.6和RCP4.5浓度路径下,2006~2040年时间段内AMOC指数和AMOC扩展指数都呈现快速下降的趋势,2041~2100年时间段内AMOC指数逐渐恢复,AMOC扩展指数基本维持不变;在RCP8.5浓度路径下,2006~2100年时间段内AMOC指数和AMOC扩展指数都表现出快速下降的趋势。通过分析FGOALS-g2中北大西洋深水的成因发现:3个典型浓度路径下AMOC的长期变化趋势主要受到GIN(Greenland–Iceland–Norwegian)海域的深水形成率的调控,而AMOC的年代际尺度的变化则主要受到Labrador海域深水形成率的控制。同时揭示了:由于北大西洋2000m深度附近的层结稳定性在RCP2.6和RCP4.5下(相比于1980~2005年)提高了30%~40%,使得由AMOC指数恢复产生的深水无法继续下沉,从而导致AMOC扩展指数没有出现恢复的现象。