简介:摘要:本文深入探讨了基于小波变换的电力系统故障信号分析与处理方法。从小波变换的理论基础出发,详细阐述了小波变换的原理、小波基的选择以及在电力系统中的具体应用。通过构建一套系统的故障信号分析流程,包括预处理、小波变换分析以及特征提取与识别等步骤,实现了对故障信号的精准剖析。利用小波变换提取的特征信息,故障可以被准确定位和隔离,同时,基于历史数据建立的故障预警模型也为故障的预防和及时处理提供了宝贵的时间窗口。本文的研究为电力系统的稳定运行提供了更加坚实的保障。
简介:实际信号大多采用零谱线分析处理。本文阐述了这一现象产生的原因及解决办法。通过对一组具体实验数据的分析,进行了n点傅里叶变换。通过观察原始数据和频移频谱,可以直观地理解原始数据。信号具有较强的直流分量和趋势项(趋势项又分为线性趋势项和多项式趋势项)。因此,傅里叶变换得到的频谱大部分为零。本文利用Matlab的数字信号处理功能,计算信号的直流分量,消除趋势项,得到整个频谱。最后根据实际需要选择具体区域。进行光谱分析,得到合格的光谱。
简介:摘要:随着正交异性钢桥面板的广泛使用,其易疲劳易产生微裂纹的弊端也日益凸显,传统方法是在U肋和横隔板连接处设置弧形缺口来缓解此类问题。但是传统的弧形切口的形状和尺寸设计大多源于实践经验,缺乏相关理论支撑,普适性低。为了实现弧形切口的智能化设计,本项目搭建了基于遗传算法的ANSYS和MATLAB联合仿真平台,对弧形切口的形状进行拓扑优化。研究结果表明:随着优化进程开展,应力集中位置会发生偏移,从初始模型易疲劳的肋脚处转移至优化后模型的缺口上部圆弧的中间位置,远离了易疲劳的焊趾;优化前模型弧形切口处的最大应力为4.82Mpa,最小应力为17.4Kpa,优化后弧形切口处的最大应力增加至5.52Mpa,最小应力增加至2.76Mpa,最大应力比值仅为1.14,最小应力变化高达275倍,材料利用率大大提高,实现了结构的优化;初始模型在应力幅为65.86MPa以下时达到疲劳截止限,在相同的条件下优化后的模型疲劳截止限为72.07MPa,模型抗疲劳能力明显得到提高。模型数据分析证明,设计的联合仿真平台可以有效地实现弧形缺口的拓扑优化,为未来的物理模型实验提供了模型基础,理论基础。