简介:为获得超高压提取大豆皂苷的最佳工艺条件,描述提取的动力学过程,以压力、保压时间、乙醇体积分数和液料比为试验因子,大豆皂苷得率为响应值,分别采用单因素试验和二次正交旋转组合试验对工艺条件进行优化。根据Fick第一扩散定律。以所得数据为样本,建立超高压提取大豆皂苷的动力学模型。结果表明:影响大豆皂苷得率的因素主次顺序为液料比〉压力〉乙醇体积分数〉保压时间,边际效应大小顺序为乙醇体积分数〉液料比〉保压时间〉压力。确定超高压提取大豆皂苷的最佳工艺条件为:压力439.09MPa,保压时间16.28min,乙醇体积分数83.53%,液料比32.28mL/g,在此条件下大豆皂苷得率为1.252%,优于传统的回流提取。所得动力学模型可较好地描述提取液中大豆皂苷浓度随压力、保压时间及液料比的变化关系。超高压提取工艺具有操作简便,提取效率高,提取时间短等优点,可用于天然产物有效成分的提取。
简介:原料奶在实际运输过程中的温度是波动变化的。本文在建立10~37℃温度范围的金黄色葡萄球菌在原料乳中生长模型的基础上,得到温度变化对金黄色葡萄球菌生长状态的影响。采用"等效生长时间"理论,结合modifiedGompertz模型得到波动温度下原料乳中金黄色葡萄球菌的生长模型。验证结果显示,R2,Af,Bf均接近于1,表明所建预测模型能够较好地预测波动温度下原料乳中金黄色葡萄球菌的生长状况。此外,将模型与CombasePredictor(CP)软件在相应条件下所建波动模型作比较,CP模型基于肉汤培养基而建,金黄色葡萄球菌的生长速率明显大于牛奶中培养的,表明预测软件应用于食品中进行波动温度建模时应作验证,在牛奶中建立的波动模型的适用性较高。
简介:丙烯酰胺是食品热加工过程中形成的一种内源性化学污染物,能引起细胞毒性。矢车菊素-3-葡萄糖苷作为一种果蔬中广泛存在的花色苷,具有显著的抗氧化活性。目前应用花色苷进行AA细胞毒性的干预尚无系统性研究。为了筛选适用于AA细胞毒性干预的细胞模型,对体外培养的HepG2、L02、Caco-2、BHK-21及MDA-MB-231等细胞,通过不同浓度AA和Cy-3-glu培养,采用结晶紫染色法测定不同时间的细胞存活率,最终确定AA最适的作用时间为24h,适宜作用浓度分别为2.5mmol/L和5.0mmol/L;Cy-3-glu的最适预处理时间为4h。筛选出适合Cy-3-glu干预的AA诱导的细胞模型为MDA-MB-231细胞。通过Cy-3-glu抑制细胞内活性氧生成和谷胱甘肽的降低并验证,10~100μmol/LCy-3-glu预处理表现出显著的AA毒性的保护作用,为毒性干预研究提供模型基础。