简介:目前汽车发动机动力总成悬置系统设计的主要任务是选择悬置元件的刚度、位置和角度,使悬置系统自由振动模态频率避开发动机怠速激励力频率与车身自振频率,并尽量提高各模态振型的解耦程度,从而提高悬置系统隔振效果.悬置系统按预定频率严格解耦设计是使设计出的悬置系统模态频率完全等于按汽车设计频率规划预定的频率,并使各模态的振型严格解耦,即各向振动能量的解耦度等于1.本文从悬置系统的自由振动方程出发给出了对悬置系统按预定频率严格解耦设计的方程组,可以利用广义逆矩阵的理论求该方程组的解,亦可通过方程组构造函数进而求出该方程组的解,从而提供比当前的悬置系统模态优化设计更为简便高效的优化设计方法.相应的算例验证了本文提出的按预定频率严格解耦设计方程和求解方法的正确性.
简介:将同伦理论和参数变换技术相结合提出了一种可适用于求解强非线性动力系统响应的新方法,即PE-HAM方法(基于参数展开的同伦分析技术).其主要思想是通过构造合适的同伦映射,将一非线性动力系统的求解问题,转化为一线性微分方程组的求解问题,然后借助于参数展开技术消除长期项,进而得到系统的解析近似解.为了检验所提方法的有效性,研究了具有精确周期的保守Duffing系统的响应,求出了其解析的近似解表达式.在与精确周期的比较中,可以得出:在非线性强度α很大,甚至在α→∞时,近似解的周期与原系统精确周期的误差也只有2.17%.数值模拟结果说明了新方法的有效性.
简介:研究了因与外部接触而发生局部非线性的动力学系统.基于NOFRF理论,对系统中出现的各次谐波分量进行研究,推导出了该类系统各自由度各阶谐波分量的表达式.证明了该类动力学系统中各自由度之间高次谐波分量的与原线性系统动柔度矩阵的相关元素成正比关系,并据此提出了一种简洁的局部非线性位置的辨识方法.采用这种方法,可以通过结构体中任意两个部位之间的高次谐波分量的比值关系,经过一次谐波激励而辨识出非线性的具体位置.对一个多自由度系统进行数值仿真,验证了该方法的有效性.
简介:研究了不确定参数的Lorenz系统和Rossler系统的异结构同步问题.基于Lyapunov稳定性理论,采用主动同步,自适应同步两种方法实现异结构混沌系统的同步,并且利用数值模拟来阐释理论的有效性.
简介:基于虚功原理,从平衡方程和力学边界条件出发,得到平面Stokes流的拉格朗日函数,为拉格朗日函数的选取提供了理论依据.并导出哈密顿函数,在全状态下建立了平面Stokes流的Hamilton正则方程,进而采用直接法给出了两侧边为静止壁面的解析解,并通过对单板驱动矩形空腔Stokes问题的计算说明了方法的有效性.
简介:研究Birkhoff系统Noether逆定理.提出对Birkhoff系统由已知的守恒量导出Noether对称性的一般解法,指出一般解法中的困难.通过引入守恒量和对称性直接相关的辅助方程,给出逆定理的特殊解法.举例说明了所得结果的应用.