简介:根据Hamilton原理和假设模态离散化,建立了柔性梁绕定点旋转过程的动力学模型,并通过假设模态法对方程进行了离散处理.在此基础上,基于中心差分法的计算原理,提出了柔性梁动力学方程的子循环计算公式,分别建立了其同步更新格式和子步更新格式,在子循环积分过程中,通过步长修正保证了计算的精度和稳定性.计算结果表明:所提出的算法能在保持合适的精度要求下,有效地提高响应的计算效率,并且通过积分步长的修正可以提高计算稳定性,有效地处理了方程的刚性问题.
简介:给出了物体与细长杆或梁弹性碰撞恢复系数的一种求解方法.在研究碰撞问题时,把碰撞物作为靶体的附加质量,从而把碰撞问题转化为常规的振动问题求解.两个撞击物的分离时刻根据撞击力为零得到.结论如下:只考虑弹性碰撞时,恢复系数不仅与靶体的材料性质有关,还与碰撞物体质量比、靶体的支承条件有关,但与碰撞的初始速度无关.
简介:基于模态叠加理论,通过桥梁多个截面处加速度响应数据,计算得到桥梁受移动荷载作用下的模态加速度.根据d'Alembertian原理,桥梁截面任意时刻的动弯矩可看作是任意时刻受惯性分布力和移动荷载作用下的静弯矩.利用影响线,建立起移动荷载与弯矩之间的关系,提出了一种利用弯矩影响线识别移动荷载的方法.算例表明,当荷载只有一个时,可由单点弯矩直接识别,当有多个移动荷载时,可基于多个截面的弯矩数据,利用最小二乘法可以有效的识别出任意时刻作用于桥梁上的移动荷载值.该方法避免了求解桥梁的动力学微分方程,识别精度高且过程简单,适合于工程应用.
简介:航天器对恶劣动力学环境的适应能力直接关系到整个航天飞行任务的成败,振动试验控制技术是动力学环境试验的关键环节.本文分析了近年来国内外航天器振动试验设备和振动控制算法的研发动态、基本原理和关键技术达到的水平.提出了跟踪研究的基本思路,途径及建议.
简介:在简单介绍WH-800型离心机基本结构及工作原理的基础上,介绍了基于重构吸引子轨迹矩阵的奇异值分解技术,并引入自相关函数对现有奇异值分解技术加以改进.通过对现场实测故障信号的分析,表明改进的奇异值分解技术具有很好的降噪效果,能在强噪声背景环境下准确提取设备的故障特征信号,为离心机的故障诊断提供了一种新的思路.
简介:采用面向对象技术对复杂机械系统动力模型元素进行了分析.根据其特点提出了支持动力学仿真建模平台的模型元素类体系结构,并对该平台关键技术--关联关系管理和子系统建模进行了探讨.最后应用上述技术开发出了仿真建模平台InteDyn,并以汽车整车模型和悬架模型为例证明了这些技术的可行性和有效性.
简介:Leland模型是在考虑交易费用的情况下,对Black—Scholes模型进行修改得到的非线性期权定价模型.本文针对Leland模型,提出了一种求解非线性动力学模型的自适应多尺度小波同伦摄动法.该方法首先利用插值小波理论构造了用于逼近连续函数的多尺度小波插值算子,利用该算子可以将非线性期权定价模型方程自适应离散为非线性常微分方程组;然后将用于求解非线性常微分方程组的同伦摄动技术和小波变换的动态过程相结合,构造了求解Leland模型的自适应数值求解方法.数值模拟结果验证了该方法在数值精度和计算效率方面的优越性.
柔性梁响应子循环计算研究
利用DMSM方法求解弹性撞击恢复系数
利用弯矩影响线的移动荷载识别方法
航天器振动试验控制技术进展
基于奇异值分解技术的离心机故障诊断
复杂机械系统动力学建模技术研究与应用
求解非线性期权定价模型的自适应小波同伦摄动技术