学科分类
/ 6
120 个结果
  • 简介:利用群论的方法研究系统的对称性,可以将对称系统分解为系列互相独立的子系统,使系统的H2和H∞控制可以在低维子系统上设计实现,从而减少控制系统设计中的计算量,这点对于大规模系统的控制尤其重要.简要介绍了利用系统对称性简化Lyapunov方程和Riccati方程的求解,以及计算控制系统的范数等几个例题,这些都是H2和H∞控制中常见的计算问题.

  • 标签: H2/H∞控制 群表示理论 对称系统 LYAPUNOV方程 RICCATI方程 应用
  • 简介:考虑了剪滞翘曲应力自平衡条件、剪切变形和剪力滞后效应等因素的影响,本文提出了种对宽翼薄壁T形梁动力学特性的分析方法.分析中为了准确反应T形梁翼板的动位移变化,三个广义动位移被引入,且以能量变分原理为基础建立了T形梁动力反应的控制微分方程和自然边界条件,据此对T形梁的动力反应特性进行了分析,揭示了T形梁桥动力反应的规律.算例中,对比了考虑和不考虑剪滞翘曲应力自平衡条件对T形梁动力反应的影响,结果显示考虑剪滞翘曲应力自平衡条件的计算方法有限元数值解吻合更好.

  • 标签: T形梁 剪力滞后 自平衡条件 动力反应 能量变分原理
  • 简介:在GoodwinPuu的宏观经济思想基础上,得到了个推广的非线性动力学经济周期系统.首先用数值方法研究了此系统在特定参数条件下的全局分岔行为.然后结合最大Lyapunov指数,详细讨论了系统在分岔过程中动力学特征的转变.通过分析分岔图形发现在某些参数区间内倍周期分岔导致了混沌;在混沌区域内嵌有多个周期窗口;"加速数"值的增加可以促进经济的周期性运动.最后介绍了分岔和混沌分析得到的动力学性质对理解经济波动的应用.

  • 标签: 经济周期 分岔 混沌 最大LYAPUNOV指数
  • 简介:研究了粘弹性夹层圆板的自由振动特性.基于经典弹性薄板理论和Kelvin-Voigt粘弹性本构方程,建立了粘弹性夹层圆板振动控制方程.采用分离变量法导出了粘弹性夹层圆板的自然频率及振型解析表达式,计算了固支和简支粘弹性夹层圆板的自然频率,并与有限元计算结果进行比较;讨论了粘弹性夹层圆板的夹心层比率对自然频率及衰减系数的影响.研究表明:(1)随着夹心层厚度的增大,系统频率先增大后减小,高阶时该趋势表现更为明显;(2)随着夹心层厚度的增大,衰减系数直增大,高阶时该趋势表现更为明显.

  • 标签: 粘弹性夹层圆板 自由振动 Kelvin-Voigt 分离变量法
  • 简介:本文详细分析了个具有粘弹性项的非线性振子的动力学控制.首先研究了系统平衡点的稳定性,表明系统存在复杂的无界动力学行为.然后引入时滞速度反馈对这个不稳定系统进行控制.研究结果表明速度反馈控制能镇定此不稳定的粘弹性系统.适当的选择控制增益和控制时滞,控制系统有稳定的平衡点,由Hopf分岔产生的周期解,拟周期解,并能展现出复杂的混沌解.数值模拟验证了结论的正确性.

  • 标签: 稳定性 粘弹性 余维2分岔 时滞 HOPF分岔
  • 简介:以灰色预测控制理论为基础,采用现代控制理论中的二次型优化原理,以控制力和响应加权最小为目标函数,设计了两种基于灰色预测理论的转子系统振动主动控制方案--灰色GM(1,1)预测优化控制方案和灰色Verhuslt预测优化控制方案.并将该两种方案分别应用于带电磁阻尼器转子轴承系统的转子振动主动控制中,通过数值仿真验证了两种控制方法的有效性,并对两种方法的控振效果进行了比较.

  • 标签: 转子系统 振动主动控制 灰色GM(1 1)预测优化控制 灰色Verhuslt预测优化控制
  • 简介:针对自治混沌系统,基于系统稳定性理论,通过设计合适的非线性反馈控制器,给出了普适的广义投影同步定理.定理中函数的选择可以为系统的线性或非线性函数,更具灵活性和普适性;文中理论还可以通过调整参数提高广义投影同步的速度.数值仿真进步验证了本文理论的有效性和实用性.

  • 标签: 广义投影同步 自治混沌系统 非线性反馈 数值仿真
  • 简介:提出种新的类Lorenz系统,它具有三维二次型的自治常微分方程组形式.理论分析中,应用Lyapunov判定方法研究了系统平衡点的稳定性.在此基础之上,数值仿真表明,文中所考查的动力学系统具有极其丰富的动力学现象,包括混沌和多种形式的周期运动形式.文中还分析了两个重要参数对系统稳定性的影响,并通过构建个受控系统分析了系统混沌吸引子的形成机制.

  • 标签: 类LORENZ系统 混沌 形成机制 稳定性
  • 简介:研究了种含有绝对值项的三维微分动力系统,用李雅普诺夫方法得到了系统发生第次Hopf分岔的条件.利用相轨迹图、分岔图、最大李雅普诺夫指数谱等非线性动力学分析方法,分析了该系统从规则运动转化到混沌运动的规律.该系统是按照Feigenbaum途径(倍周期分岔)通向混沌的,在混沌区域存在周期窗口.当参数达到激变临界点时,混沌吸引子和不稳周期轨道在吸引子边界上碰撞,发生边界激变,激变临界值的领域内还存在相对长时间的瞬态混沌过程.

  • 标签: 带绝对值项系统 分岔 激变 混沌 倍周期分岔
  • 简介:针对日益受到关注的液体晃动问题,提出了种基于浅水波理论的研究方案.该方案采用浅水波理论而非势流理论导出系统控制方程,并通过哈密顿体系表达;利用中心有限差分法和Stormer-Yerlet算法进行空间和时间离散;模拟了不同初值条件下的液体晃动情况并对比分析了影响系统非线性响应的主要因素.结果表明,基于浅水波理论能有效解决液体晃动问题;Euler格式对比,Stormer-Verlet算法精度较高;除共振外对于系统非线性响应的影响容器初始位移比初始速度更显著;非共振情况定条件下,充液容器运动过程中液体晃动能起到阻尼作用.

  • 标签: 液体晃动 浅水波理论 初值问题 数值模拟 非线性
  • 简介:结合材料力学中曲率的概念,利用格罗斯曼理论计算气动力,应用拉格朗日方程建立了类大展弦比机翼的非线性动力学模型.对该模型进行了无量纲化处理,利用第李雅普诺夫量研究了该系统由稳态平衡解向Hopf分岔解(颤振运动)演化的临界条件和路径,以及系统发生benign颤振(超临界)、catastrophic颤振(次临界)的识别条件.利用规范性理论、Hopf分岔定理研究了模型的颤振行为,并研究了不同展弦比对颤振速度的影响.数值模拟验证了理论分析的结果.

  • 标签: 大展弦比机翼 颤振 稳定性 分岔
  • 简介:道岔复杂的轮轨关系及其变截面特性是车辆通过道岔时引起振动甚至脱轨的关键因素.根据60kg/m钢轨18号可动心轨道岔设计布置图,在多动力学软件中建立车辆—道岔耦合系统模型,在此基础上对车辆—道岔系统模型进行验证,仿真计算车辆侧向和直向通过道岔的动力学响应.结果表明转辙器区、辙叉区轨道截面变化和轮轨型面匹配是影响车辆动力学性能的主要因素.最后,对车辆侧向通过离散轨道模型工况下的动力学响应进行仿真计算,讨论道岔轨下整体刚度和阻尼对模型动力学性能的影响,为改善车辆通过道岔时的动力学性能、道岔轨下刚度阻尼参数匹配提供理论基础.

  • 标签: 车辆 道岔 多体动力学 动力学性能
  • 简介:为了协调高速铁道车辆的运动稳定性曲线通过性能之间的矛盾,本文采用多目标优化方法对种高速铁道车辆的关键悬挂参数进行了优化处理.采用多动力学技术建立了某型高速铁道车辆62个自由度的动力学模型,模型考虑了轮轨接触几何非线性、轮轨蠕滑非线性和阻尼非线性等.采用ADAMS—Matlab联合仿真对车辆悬挂系统进行参数改造,使弹簧刚度和阻尼系数均可调.采用基于遗传算法的多目标优化方法对悬挂参数进行优化,使车辆模型能同时满足3种动力学指标.对比优化前后模型的动力学性能可以发现:模型的运动稳定性和曲线通过性能得到显著提高,虽然运行平稳性有小幅降低,但仍能保持在优良的工作状态.

  • 标签: 参数化建模 多目标优化 悬挂系统 遗传算法
  • 简介:圆射流碎裂过程的理论研究对于发动机喷雾燃烧科学研究至关重要,线性稳定性理论是对射流碎裂过程研究的种重要方法.论述了粘性圆射流在不可压缩气体介质中的线性稳定性理论分析,应用液、气相的线性纳维-斯托克斯量纲控制方程组和量纲的线性运动学和动力学边界条件,采用对动量方程点乘哈密顿算子的方法,推导出了n阶量纲色散准则关系式.

  • 标签: 线性稳定性理论 圆射流 n阶色散关系式 修正贝塞尔方程
  • 简介:采用Timoshenko梁修正理论研究了有梯度界面层双材料梁的振动问题,利用静力方程确定了有梯度界面层双材料梁的中性轴位置,在此基础上应用Timoshenko梁修正理论建立了有梯度界面层双材料梁的振动方程,求得其自振频率表达式及其在简谐荷载作用下强迫振动的解析解.讨论分析了梯度界面层高度等因素对有梯度界面层双材料梁的振动影响,并用有限元法验证了Timoshenko梁修正理论.通过实例计算,得到了梯度界面层高度等因素对有梯度界面层双材料梁振动特性有较大影响的结论.

  • 标签: TIMOSHENKO梁 梯度界面层 中性轴 振动
  • 简介:传统航天器结构模态试验通常会用来检验结构有限元分析模型,但往往是通过人工调整有限元模型参数来修正模型,分析试验联系不紧密,影响后续分析结果的精度、研制周期和经费等.为改变航天器模态分析及试验现状,文中介绍了模态分析-试验体系工程研制流程在理论上的可行性,并以某缩比舱段为例,基于Virtualab-Nastran软件平台,完整实施模态分析-试验体系过程,包括预试验分析、模态试验、模型修正等过程,紧密联系模态分析、试验,并依据试验结果准确快速修正有限元模型,使分析结果与试验接近,实现精确建模.

  • 标签: 模态分析 模态试验 模型修正 有限元
  • 简介:研究维分段不连续映射的边界碰撞分岔问题,推导了周期n解的边界碰撞分岔曲线及fold分岔条件,通过数值仿真验证了这些条件的正确性.研究发现系统存在周期增加序列和周期叠加序列.最后,对分段不连续映射进行三参数分岔研究,揭示了系统各参数对其动力学行为的综合影响.

  • 标签: 分段映射 边界碰撞分岔 周期叠加 周期增加
  • 简介:为分析类含间隙结构的振动特性及为保护特定子结构而预留间隙的合理性,根据其振动试验结果,采用假设模态法的思想,将该类带间隙的非线性结构按其子结构的阶弯曲模态简化为带间隙的单自由度二自由度弹簧-质量系统,分析了不同激励条件下间隙对系统动力学响应的影响.分析结果表明:此类结构中,间隙具有阻碍振动传递的性质,预留间隙是合理的.

  • 标签: 间隙 假设模态法 固有频率 主共振 超谐共振