学科分类
/ 2
31 个结果
  • 简介:分析动力学与分析结构力学在数学理论上是一致的.振动与结构力学问题,其实只是一个符号之差,分析力学方法对两方面可通用.双曲型偏微分方程与椭圆型偏微分方程也是差一个符号.虽然性质不同,但分析上有共同之处.本文提出在有限元分析方面,不用对时间、空间分别离散而是组成混和的时空混和有限元网格.数值结果表明,时空混和有限元是有前途的.

  • 标签: 分析结构力学 时空混和元 双曲型偏微分方程 多尺度
  • 简介:分析力学历来是在动力学范围论述的,结构力学与最优控制模拟关系的共同基础就是分析力学.这表明在结构力学与最优控制理论的架构也应有分析力学的整套理论.本文就结构力学讲述分析力学,称分析结构力学.保守体系可用Hamilton体系的方法描述,其特点是保辛.保辛给出保守体系结构最重要的特性.有限元法是从结构力学发展的,有限元的单元刚度阵应保持对称性,其实这就是保辛.根据区段单元变形能只与其两端位移有关,就可通过数学分析得到Lagrange括号与Poisson括号,展示了其辛对偶体系、正则方程、正则变换等的内容.

  • 标签: 分析结构力学 有限元 保辛 正则变换 动力学 分析力学
  • 简介:电磁场节点有限元法因未强加电场散度为零的条件而一直受到伪解出现的困扰.本文针对电磁共振腔问题,给出在频域的Maxwell方程表达式.通过引入Lorentz条件,推导出电磁共振腔二类变量和三类变量的变分原理,由此提出了新的电磁共振腔节点有限元法,避免了伪解的出现.最后用子空间叠代法求解了共振腔的本征值问题.数值算例表明本文方法是有效可行的.

  • 标签: 电磁波 有限元 共振腔 本征值 子空间叠代法
  • 简介:发展型偏微分方程混和有限元的求解往往需要变动的维数,不符合传递辛矩阵群固定维数的限制.本文按变分法的进一步发展的思路,推导了运用虚功原理解决不同维数传递辛矩阵群连接的原理.数值例题表明了方法的有效性.

  • 标签: 发展型偏微分方程 混和有限元积分 传递辛矩阵 不同维数的连接
  • 简介:构造6节点三角形单元,适合于平面薄膜自由振动的有限元分析.文中采用面积坐标,给出单元的形函数,根据哈密顿原理建立薄膜自由振动方程,推导其单元刚度矩阵和单元质量矩阵.3个典型算例表明,6节点三角形单元的计算结果比ANSYS三角形单元更接近理论解,具有更高的精度.

  • 标签: 平面薄膜振动 有限元分析 6节点三角形单元
  • 简介:使用有限元传递矩阵法分析了某大长径比弹箭的固有振动特性,成功求得了其固有振动频率和振型函数,计算结果得到试验验证.该方法兼备有限元法建模方便、应用范围广和传递矩阵法应用灵活、矩阵阶次低、计算速度快的优点,易于分析复杂变截面结构弹箭的振动特性,并且可直接利用商业有限元软件得到该方法仿真所必需的质量矩阵和刚度矩阵.

  • 标签: 大长径比弹箭 固有振动特性 有限元传递矩阵法
  • 简介:主要考虑弯曲变形的细长轴向运动梁,可以作为工程中广泛应用在航天器天线、液体输送管道、汽车驱动带、电梯缆索等的简化机构.对轴向运动柔性梁线性微分方程,采用复模态分析方法导出两端简支和固支边界条件下的固有频率方程;采用Ritz法建立轴向运动梁的有限单元法模型.基于该模型在多种边界条件下进行梁的横向振动分析,并开展定点激励下激励功率谱的辨识.仿真结果表明,与传统的Galerkin截断方法相比.有限元方法能够克服分析方法的建模困难,对复杂边界梁进行有效的分析,对激励的功率谱能够有效地辨识.

  • 标签: 轴向运动梁 复模态 有限元 复杂边界 功率谱辨识
  • 简介:提高大气层具有复杂弹道特性的飞行器测弹道数据处理精度一直是困扰研究学者和数据处理人员的课题.本文应用已有的数据融合理论,结合大气层机动飞行器的运动特性,提出了一种基于分段三次样条函数的弹道数据融合处理算法.仿真和实测处理结果表明:该算法显著地提高了数据处理精度,在相关数据处理任务中具有一定的应用价值.

  • 标签: 数据融合 数据处理 样条函数
  • 简介:尾翼稳定脱壳穿甲弹(APFSDS)是杀伤地面装甲目标的利器.尾翼稳定脱壳穿甲弹在后效期脱壳阶段卡瓣和弹芯存在相互干扰使膛外运动非常复杂,影响脱壳穿甲弹的射击密集度.根据质点运动和动量矩定理的多坐标系的表达形式和脱壳穿甲弹的膛外运动和卡瓣分离规律,建立了能够更精确的描述卡瓣的膛外运动非对称性分离的动力学模型,实例计算了卡瓣的脱壳过程.该模型对分析卡瓣膛外运动和分离过程具有借鉴价值.

  • 标签: 尾翼稳定脱壳穿甲弹 非对称脱壳 多坐标系 质点运动 相对动量矩定理 碰撞识别分析
  • 简介:为了获得移动质量沿梁匀速运动的系统动态响应,建立了时空有限元数值求解模型.考虑移动质量惯性项,得到移动质量-梁时变系统的动力学方程.应用时空有限元法.得到了移动集中质量作用下Ber-noulli-Euler梁离散单元的质量矩阵、刚度矩阵.与Newmark-β法、Wilson-θ法计算结果进行比较,时空有限元法计算梁的动态响应的精度更高.

  • 标签: 移动质量 时空有限元法 数值分析
  • 简介:大型柔性空间结构的振动控制问题引起了广泛的关注.压电材料以其低质量、宽频带和适应性强等特点,非常适合于柔性空间结构的振动控制.本文针对上下表面粘贴有分布式压电传感器和作动器的智能层梁结构,提出了一种考虑压电材料对结构质量、刚度影响的高阶有限元模型.考虑到空间结构可能承受较大的热载荷,在模型中计及了压电材料的热电耦合效应.采用常增益负反馈控制方法、常增益速度负反馈控制方法、Lyapunov反馈控制方法和线性二次型调节器方法(LQR)设计主动控制器,实现了智能层梁结构脉冲激励下的振动主动控制.仿真结果表明,LQR方法更能有效的实现结构振动控制,并且具有更低的作动器峰值电压,但不能消除热载荷引起的结构静变形.

  • 标签: 主动振动控制 柔性空间结构 压电材料 有限元 Lyapunov反馈 LQR方法
  • 简介:利用三维有限元方法,分析了风速、攻角、导线分裂、磁场力和防舞装置等各种因素对导线舞动的影响.结果表明:风速、攻角和导线分裂等对导线舞动的影响很大;磁场力的影响很小.为减轻和防止导线舞动,在导线距离杆塔1/3和2/3处施加压重,可以获得明显的防舞效果.

  • 标签: 输电导线 三维有限元 导线舞动 攻角 导线分裂 振动现象
  • 简介:为在外测数据处理中获取更高精度目标部位修正结果,解决已知目标几何尺寸难以精确修正的问题,提出采用捷联惯导系统姿态修正跟踪部位的方法.根据捷联惯导系统遥测四元数信息计算姿态旋转矩阵,利用测处理中各个参照坐标系的相互关系,修正垂线偏差的影响,实现跟踪部位位置参数保精度修正.通过测试场景仿真计算,与常用速度矢量修正法进行比较、验证,结果表明姿态修正方法精确可行、结果正确,满足数据处理的精度要求和结果评定需要.

  • 标签: 姿态 垂线偏差 跟踪部位修正 坐标系
  • 简介:在考虑温度对圆柱壳材料性能影响的基础上,建立了圆柱壳在扰动压作用下的几何非线性动力控制方程.并采用伽辽金原理及Melnikov法研究了圆柱壳在热载荷及微扰压作用下的分岔,进一步讨论分析了温度、Batdorf参数等因素对圆柱壳发生混沌运动区域的影响,得出了随温度、Batdorf参数的增大,混沌运动区域将越来越大的结论.

  • 标签: 圆柱壳 热载荷 分岔 混沌
  • 简介:在外弹道数据处理中,奇异点处理、特征点求取与随机误差削弱都是精度估计的关键环节.本文首先利用小波变换在处理奇异点、特征点、噪声消除方面的优势,对观测数据进行基于小波变换的分解、融合、重构处理,剔除奇异点,查找特征点,削弱随机误差.其次利用节点自由分布B样条描述导弹运动轨迹,使该弹道确定方法转化为关于求解导弹轨道样条表示参数和测量系统误差的多模融合的非线性优化问题,采用非线性最优化方法,进而得到待估参数的最优估计,完成弹道的最佳逼近.仿真结果表明,该技术应用在奇异点处理、特征点提取与随机误差削弱方面效果较好,多模融合算法能减少计算量,且能切实提高参数估计精度.

  • 标签: 小波变换 样条分频 信息重构 数据融合
  • 简介:随机振动试验中存在的加速度功率谱密度带超差问题对普遍采用的随机振动试验非常重要,本文分析了功率谱密度带超差出现的原因、征兆、对试验产生的影响以及采取的解决措施,并且分析了常用随机振动试验和振动试验计量检定标准中对功率谱密度带超差的规范要求.关键词随机振动,加速度功率谱密度,

  • 标签: 随机振动 加速度功率谱密度 带外超差
  • 简介:气体炮以其优良的性能,在兵器弹道环境模拟领域得到了较好的应用.首先分析了典型弹药的发射环境参数,并找出了其特征值.然后运用气体动力学的相似理论建立了气体炮的弹道模型,并在计算机上进行了数值模拟.为后续气体炮的结构设计、相关设备的选型、气体炮参数的调整提供了理论依据.

  • 标签: 气体炮 模拟研究 发射环境 建模 内弹道模型 气体动力学
  • 简介:研究了悬索在超谐波共振和1:3共振共同作用下的两模态响应.首先利用Galerkin方法对悬索的面运动方程进行离散,得到无穷维离散模型.并利用多尺度法推导出悬索同时发生超谐波共振和1:3共振时的平均方程以及近似响应.最后研究了平均方程的稳态解以及垂跨比对幅频曲线、水平张力以及时间历程的影响.

  • 标签: 悬索 多尺度法 内共振 超谐波共振
  • 简介:在能量编码原理的基础上,利用哈密尔顿函数得到了大脑皮层大规模神经元集群在阈下和阈上互相耦合时神经元电位变化的能量函数.根据神经电生理的实验数据得到了高斯白噪声条件下神经元电位活动的膜电位运动方程.研究结果表明:本文得到的膜电位的均值恰是先前已发表的膜电位运动方程的精确解.在这个基础上,还得到了神经元集群编码的哈密尔顿函数随时间的演变过程,即神经元集群随时间的能量演化过程的定量表达式.

  • 标签: 神经元集群 能量编码 哈密尔顿函数 生物学神经网络