学科分类
/ 1
17 个结果
  • 简介:随着航空航天事业的发展,对各种材料性能的要求也越来越高.而蜂窝夹层板在结构和性能上具有许多优点,已在航空航天等领域应用广泛,并在一些重要结构中充当承力部件,但由于其特殊的蜂窝结构,相对于一般的板,在受力时会发生比较大的变形,所以用非线性理论研究蜂窝夹层板结构,并考察不同参数对非线性振动特性的影响,具有重要的理论和实际意义.如今,蜂窝夹层板的几何非线性问题已引起更多学者的关注.在一般均质理论的假设下,一些学者已经研究了各项同性蜂窝夹层板板的非线性动力学特性.研究了一类受面内激励和横向外激励联合作用下的四边简支蜂窝夹层板在主参数共振-1:2内共振时的双Hopf分叉问题.首先利用多尺度法得到系统的平均方程,然后结合分叉理论得到了系统的分叉响应方程,根据对分叉响应方程的分析,得到了六种不同的分叉响应曲线并给出了系统产生双Hopf分叉的条件.利用数值方法得到系统在参数平面的分叉集,通过对不同分叉区域的分析发现,随着参数的变化系统平衡点会分叉为两类周期解,随后周期解会通过广义静态分叉为准周期解,或者通过广义Hopf分叉为3D环面.

  • 标签: 双Hopf分叉 蜂窝夹层板 不变环面 周期解
  • 简介:设计了非线性参数控制器来改变参数激励系统的稳态响应,消除了系统主共振时的鞍结分岔和减小了系统稳态响应的幅值.从而消除了系统特有的跳跃和滞后现象.首先由多尺度法得到系统的近似频响方程,再由奇异性理论来分析分岔特性,从而实现非线性控制的目标.由数值模拟来确定了非线性参数控制器的有效性和可行性.

  • 标签: 参数激励系统 分岔控制 非线性参数前馈控制 鞍结分岔 跨临界分岔
  • 简介:研究了一类参数激励和外激励联合作用下四边简支薄板在1:1内共振下的周期解分叉.首先,根据vonKarman方程推导出四边简支薄板的运动控制方程,利用Galerkin方法得到参数激励和外激励联合作用下的两个自由度的运动方程.然后,通过引入周期变换和相应的Poincar6映射推广了次谐Melnikov方法.最后,对系统进行数值模拟验证了理论的正确性.

  • 标签: 周期解 次谐Melnikov函数 周期变换 薄板
  • 简介:考虑生物生长过程中受到的不可预知的跳跃性的环境扰动,运用一类非高斯噪声建立了随机的基因转录调控系统.利用MonteCarlo法得到了系统的稳态概率密度函数,研究了非高斯噪声的各个参数对蛋白质浓度的影响,发现噪声强度不能够诱导基因开关,而稳定为基因开关的控制参量.进一步研究了非高斯噪声作用下系统从一个态跃迁到另一个态的平均首通时间(MFPT),并讨论了各个参数不同的作用机理

  • 标签: 非高斯噪声 基因转录调控系统 稳态概率密度 平均首通时间
  • 简介:本文利用基于Simulink的数值模拟方法研究了高斯色噪声激励下三势阱系统的逻辑随机共振现象.首先对于独立的加性和乘性高斯色噪声激励下的三势阱系统,发现仅有加性噪声作用不能实现可靠的逻辑操作,但加性噪声和乘性噪声共同作用可诱导良好的逻辑随机共振现象.和高斯白噪声相比较,高斯色噪声激励下能产生可靠逻辑随机共振的(D,Q)平面上的区域范围更大.进一步讨论了加性和乘性噪声之间的关联对于逻辑随机共振现象的影响,发现噪声关联对逻辑随机共振现象起着破坏性的作用.

  • 标签: 逻辑随机共振 三势阱系统 高斯色噪声
  • 简介:以飞行器机翼作为工程背景,将机翼简化为悬臂板模型,研究了受横向电压激励、基础激励、面内激励联合作用下复合材料层合悬臂板的非线性动力学问题.首先建立其动力学模型,考虑冯-卡门大变形理论,利用Hamilton原理建立复合材料层合悬臂板的非线性动力学方程;选择符合边界条件的模态函数,利用Galerkin方法对系统进行四阶离散,得到四自由度非线性常微分方程;代入系统实际物理参数,应用MATLAB软件数值模拟得到系统振动幅值随电压激励变化的分叉图,由图可知,电压激励使系统从混沌运动变为倍周期运动,降低了系统振幅,保持系统的稳定.

  • 标签: 悬臂板 HAMILTON原理 分叉 非线性动力学 混沌
  • 简介:同时计入地基中的非线性弹性、黏性以及剪切作用的影响,研究移动集中简谐力作用下无限长地基梁稳态响应问题.假设基础非线性弹性为立方非线性.通过Adomian多项式分解方法和Fourier变换得到梁稳态响应的Green函数,再运用Fourier逆变换得到梁稳态响应近似解析解的积分表达式.最后对解析积分表达式应用留数定理得到复数域上的解.通过数值算例,考察了移动集中简谐力的频率和移动速度对无限长地基梁稳态响应的影响.另外,还通过算例对比研究了地基的非线性弹性系数和剪切系数对无限长地基梁稳态响应的影响.

  • 标签: 地基梁 非线性 无限长 移动简谐力 摄动法
  • 简介:研究了在减速带激励下具有磁流变阻尼器悬架系统汽车的非线性动力学行为。汽车采用七自由度模型,磁流变阻尼器采用Sigmoid模型。根据第二类Lagrange方程建立了汽车振动微分方程,并采用四阶Runge-Kutta法进行了数值仿真。首先以减速带高度为参数对汽车运动进行分岔分析,然后通过时间历程图、相位图、Poincare截面分析了汽车在不同减速带高度时所呈现的不同运动形式,得到了系统发生混沌运动时减速带的高度范围,并分析了系统经拟周期运动通向混沌运动的途径。研究结果为汽车平顺性控制和安全性设计提供了理论指导。

  • 标签: 减速带 磁流变阻尼器 非线性 分岔 混沌
  • 简介:研究了非高斯列维噪声作用下非线性系统的渐近线性化方法和Lyapunov指数.利用渐近线性化方法将非线性系统线性化,通过系统的响应轨迹验证了该方法的有效性.通过广义的伊藤法则公式,推导出了列维噪声驱动下Lyapunov指数的一般表达式.给出当参数变化时,非线性系统的随机稳定性分析.

  • 标签: 非高斯列维噪声 渐近线性化 LYAPUNOV指数 随机微分方程
  • 简介:主要考虑弯曲变形的细长轴向运动梁,可以作为工程中广泛应用在航天器天线、液体输送管道、汽车驱动带、电梯缆索等的简化机构.对轴向运动柔性梁线性微分方程,采用复模态分析方法导出两端简支和固支边界条件下的固有频率方程;采用Ritz法建立轴向运动梁的有限单元法模型.基于该模型在多种边界条件下进行梁的横向振动分析,并开展定点激励激励功率谱的辨识.仿真结果表明,与传统的Galerkin截断方法相比.有限元方法能够克服分析方法的建模困难,对复杂边界梁进行有效的分析,对激励的功率谱能够有效地辨识.

  • 标签: 轴向运动梁 复模态 有限元 复杂边界 功率谱辨识
  • 简介:主要对含裂纹梁在振动与超声波联合激励下所出现的非线性动力响应的机理和特性进行研究.将疲劳裂纹在外加激励下的状态简化为周期性张开一『才】合的非线性过程,基于圣维南原理,采用有限元方法建屯了含非对称疲劳裂纹梁的非线性数值分析模型.利用非线性输出频率响应函数(NOFRFs)概念,对裂纹梁在高一低频简谐激励下所出现的非线性动力响应特性的机理进行了解释.具体以悬臂梁为例,仿真分析了裂纹深度和裂纹位置等参数的变化对系统非线性动力响应特性的影响规律.

  • 标签: 非线性特性 裂纹检测 多频激励 非线性输出频率响应函数
  • 简介:研究了单自由度线性单边碰撞系统在有界随机噪声参数激励下系统的矩稳定性问题.用Zhuravlev变换将碰撞系统转化为连续的非碰撞系统,然后用随机平均法得到了关于慢变量的随机微分方程.利用伊藤法则给出了系统一、二阶矩满足的常微分方程,根据微分方程的稳定性理论得到了系统一阶矩稳定充分必要条件的解析表达式和二阶矩稳定充分必要条件的数值算法,并对理论结果用数值方法进行了仿真计算.理论分析和数值仿真表明,无论是相对于一阶矩还是二阶矩的稳定性,随着随机激励振幅变大,系统的稳定性区域变小从而使得系统变得不稳定.而当调谐参数趋于零系统达到参数主共振情形时,系统的稳定性区域变得最小.当随机噪声强度逐渐变小趋于零时,由二种矩稳定性给出的稳定性区域变得一致.在一定的参数区域内,随机噪声使得系统稳定化.

  • 标签: 线性碰撞系统 参数主共振响应 矩稳定性 Zhuravlev变换 随机平均法
  • 简介:应用随机平均法研究了高斯白噪声激励下含有分数阶阻尼项的Duffing-VanderPol系统的稳态响应.首先应用基于广义谐和函数的随机平均法得到系统关于幅值的平均伊藤微分方程并建立相应的平稳FPK方程,求解该平稳FPK方程的近似理论解得到系统幅值的稳态概率密度.分析幅值、位移和速度的稳态概率密度探究分数阶阻尼项以及其它参数对系统稳态响应的影响.发现降低分数阶的阶数可以增强系统的响应而增大分数阶的系数可以减弱系统响应.最后对原系统进行MonteCarlo数值模拟验证近似理论解的有效性.

  • 标签: 响应 分数阶 Duffing-Van der POL 高斯白噪声
  • 简介:研究索拱结构中索受外激励作用下索拱之间非线性动力学问题.利用已建立的索拱结构非线性动力学耦合面内运动微分方程,采用Galerkin方法把索拱结构的面内运动方程进行离散,然后利用多尺度法对离散的运动方程进行摄动得到索主共振情况下的平均方程,研究在索受到外激励作用下索振动对拱的振动产生的影响,同时对索拱结构内共振时的稳定、分叉及混沌情况进行了分析.结果表明:索某阶频率与拱某阶频率接近时可能出现内共振现象,能量在索拱之间相互传递,原本静止的拱也可能出现共振现象,共振频域区间内索拱振动将出现跳跃、分叉及混沌等复杂的非线性动力学行为.

  • 标签: 索拱结构 非线性动力学 分叉 混沌
  • 简介:本文以一类单自由度双边非对称碰撞振动系统为研究对象,采用广义Hertz接触模型表示碰撞过程,考察系统在宽带随机激励下的稳态响应.应用基于广义谐和函数的随机平均法推导出系统在宽带随机外激励下的伊藤随机微分方程,通过求解相应的稳态FPK方程,得到系统关于幅值、能量和位移的稳态概率密度以及位移与速度的联合稳态概率密度.另外,将系统的随机响应近似为马尔可夫过程,利用广义胞映射法得到系统的近似稳态响应.最后通过与蒙特卡罗模拟结果的对比,验证了随机平均法和广义胞映射法的有效性.

  • 标签: 碰撞振动系统 广义Hertz接触模型 随机平均法 稳态概率密度 广义胞映射
  • 简介:一个可调节速度的皮带驱动的干摩擦振子系统,设其干摩擦力大小是常值且两个激励频率是谐调的,本文对这个简单的力学模型进行了研究,分析了Filippov系统中可能出现的四种余维-1sliding分岔并给出数值模拟.分析表明:该系统具有极其丰富的sliding分叉现象,较小的激励频率易引起非光滑分岔现象.

  • 标签: 非光滑系统 余维-1sliding分岔 Filippov系统
  • 简介:提出一种新的类Lorenz系统,它具有三维二次型的自治常微分方程组形式.理论分析中,应用Lyapunov判定方法研究了系统平衡点的稳定性.在此基础之上,数值仿真表明,文中所考查的动力学系统具有极其丰富的动力学现象,包括混沌和多种形式的周期运动形式.文中还分析了两个重要参数对系统稳定性的影响,并通过构建一个受控系统分析了系统混沌吸引子的形成机制.

  • 标签: 类LORENZ系统 混沌 形成机制 稳定性