学科分类
/ 1
17 个结果
  • 简介:分析动力学与分析结构力学在数学理论上是一致的.振动与结构力学问题,其实只是一个符号之差,分析力学方法对两方面可通用.双曲型偏微分方程与椭圆型偏微分方程也是差一个符号.虽然性质不同,但分析上有共同之处.本文提出在有限元分析方面,不用对时间、空间分别离散而是组成混和的时空混和有限元网格.数值结果表明,时空混和有限元是有前途的.

  • 标签: 分析结构力学 时空混和元 双曲型偏微分方程 多尺度
  • 简介:支持向量机是一种基于统计学习理论的新的机器学习方法,该方法已用于解决模式分类问题.本文将支持向量机(SVM)用于混沌时间序列分析,实验数据采用典型地Mackey-Glass混沌时间序列,先对混沌时间序列进行支持向量回归实验;然后采用局域法多步预报模型,利用支持向量机对混沌时间序列进行预测.仿真实验表明,利用支持向量机可以较准确地预测混沌时间序列的变化趋势.

  • 标签: 时间序列分析 混沌 支持向量机
  • 简介:在受迫VanderPol振动系统的近似解的基础上,获得驱动系统的虚拟轨线.将虚拟轨线代入驱动一响应振动系统的近似误差方程,再用多尺度法求得同步时间关于反馈增益的分析表达式,并且将数值与分析结果进行比较表明:用该方法求得的同步时间与反馈增益的关系和数值模拟结果相当一致.这方法也适用于研究自激VanderPol振动系统.

  • 标签: 受迫Van der Pol振子 虚拟轨线 多尺度法 同步时间
  • 简介:基于连续Galerkin方法,给出非完整约束下多体系统时间离散的变分数值积分方法.首先对非完整多体系统Hamilton正则方程的弱形式进行时间离散,得到变分积分公式,然后讨论该积分方法对能量及约束的保持,最后以蛇板为例对该方法进行数值验证和比较.

  • 标签: 多体系统 非完整约束 数值积分 GALERKIN方法 蛇板
  • 简介:研究了乘噪声和加噪声共同作用下含有两种不同时滞项的双稳系统中的平均首次穿越时间.首先通过近似方法得到了平均首次穿越时间的解析式,然后研究了乘噪声强度、时滞量及噪声关联强度对平均首次穿越时间的影响.当噪声关联强度取正值时,平均首次穿越时间T1(x-→x+)是乘噪声强度及两种时滞量的非但调函数,是噪声关联强度的单调递增函数.包含在确定力与振荡力中的时滞量分别影响T1(x-→x+)的最大值及对应的噪声强度.平均首次穿越时间T2(x+→x-)是包含在确定力中的时滞量的非单调函数,是乘噪声强度、另一种时滞量及噪声关联强度的单调递减函数.

  • 标签: 平均首次穿越时间 时滞 乘性噪声 加性噪声
  • 简介:运用Bell多项式定理研究了一个(2+1)维AKNS方程的可积,得到双线性方程、Backlund变换以及运用Backlund变换求得其孤子解,最后运用Bell多项式得出Lax对.

  • 标签: BELL多项式 BACKLUND变换 孤子解
  • 简介:浦肯野神经元是小脑皮层唯一的输出神经元,其传入纤维主要包括来自橄榄核的盘状纤维和来自皮层颗粒神经元的平行纤维.基于与实际神经系统十分相似浦肯野神经元回路模型,本文研究了回路中三种神经元(浦肯野神经元,颗粒神经元,盘状纤维)的相位响应曲线(PRC)并结合它们各自的f-I曲线对来区分三种神经元的兴奋;进而对不同类型的神经元之间的同步进行分析,着重考察了不同神经元之间突触的电导系数与浦肯野神经元树突上的CaP电导系数的影响等,分析结果显示神经元之间同步对于它们信息传递起着重要作用.

  • 标签: 浦肯野神经元 相位响应曲线 同步性 突触电导系数 CaP电导系数
  • 简介:为了满足空间探测任务的要求,需采用轻质的伸杆机构支撑各类探测载荷远离卫星本体以避免平台剩磁对空间测量信息的干扰,而挠伸杆的弹性振动会耦合影响到卫星本体,从而降低卫星本体的姿态控制精度.考虑到挠附件振动的复杂及其对航天器本体的耦合影响,采用最优指令整形抑制挠伸杆的低阶模态振动,并在本体控制中设计自适应扰动抑制滤波器进一步抵消挠伸杆的残余振动对本体的干扰作用.仿真结果表明,此复合振动控制方法可显著的提高此小卫星的姿态控制精度.

  • 标签: 挠性伸杆 最优指令整形 自适应扰动抑制滤波器 复合振动控制
  • 简介:基于动力系统的稳定性理论、数值计算分岔图和线性化系统的最大Lyapunov指数,研究了经兴奋化学耦合的快峰神经元的同步动力学.研究表明,随着一些关键参数的改变,耦合神经元能呈现丰富的同步行为,如各种周期的同步和混沌的同步.研究结果对理解神经元系统的同步运动具有指导意义.

  • 标签: 快峰神经元模型 兴奋性化学突触 同步
  • 简介:根据Rumyantsev提出的Poincaré—Chetaev变量下的广义Routh方程.用无限小变换的方法研究它的对称与守恒量,得到守恒量存在的条件和形式.该结果比以往的Poincaré—Chetaev方程的相关结论更一般.最后.举例说明结果的应用。

  • 标签: Poincaré-Chetaev变量 广义Routh方程 对称性 守恒量
  • 简介:利用CMAC神经网络与PID控制算法,提出了一种针对飞行器挠结构振动的混合控制方法.首先在给出系统动力学方程的基础上,利用CMAC神经网络的具体特点,给出了神经网络算法;进而将PID控制算法引入控制系统,形成了一种混合控制方法,该方法具有CMAC神经网络与PID控制算法两者的优点.最后针对复杂的飞行器挠结构振动问题进行了实例仿真,说明了算法的有效.

  • 标签: 挠性结构 控制研究 CMAC神经网络 PID控制算法 混合控制方法 神经网络算法
  • 简介:建立随机风作用下高速列车动力学参数的可靠优化设计方法.首先考虑自然风的脉动特性,采用Cooper理论和谐波叠加法模拟随车移动点的脉动风速,给出随机风作用下高速列车非定常气动载荷的计算方法.然后建立高速列车车辆系统动力学模型,计算高速列车的运行安全,并基于可靠性理论,给出随机风作用下高速列车失效概率的计算方法.在此基础上,以高速列车动力学参数为优化设计变量,以失效概率和轮轴横向力为优化目标,采用多目标遗传算法NSGA—II进行动力学参数的自动寻优,建立随机风作用下高速列车动力学参数的可靠优化设计模型.经可靠优化计算,高速列车的失效概率由原始的0.4884降低为0.1406,轮轴横向力由原始的45.13kN降低为43.01kN.通过优化高速列车动力学参数可以显著改善随机风作用下高速列车的运行安全

  • 标签: 随机风 可靠性优化 动力学参数 失效概率 多目标遗传算法
  • 简介:基于Poincaré映射方法对一类两自由度碰撞系统进行研究.经过详细的理论演算得到单碰周期1/n的亚谐周期运动的存在判据,并能精确地找到亚谐周期运动的初始位置.表明碰振系统的周期运动研究可以通过解析与数值方法的结合去实现.数值模拟表明了亚谐周期运动的存在判据的正确,并通过计算Jacobi矩阵的特征值可判断周期运动的稳定性及分岔.

  • 标签: 碰撞系统 亚谐运动 POINCARÉ映射 稳定性
  • 简介:根据符号动力系统与真实动力学系统拓扑共轭的特性,本文提出动态标架分割法,把动力学系统的某时间变量序列转化成符号序列;运用Lemple-Ziv复杂度算法计算该符号序列的复杂度值,据此对动力学系统的复杂进行分析,从而可以对动力学系统的性质进行定性地判断,以杜芬振子为例,数值模拟结果表明基于动态标架分割法计算得到的复杂度能够很好地描述系统的复杂,并可定性地判断系统的性质。

  • 标签: 符号时间序列 动态标架分割法 Lemple-Ziv复杂度 动力学系统
  • 简介:峰放电频率适应是神经元在信息处理过程中重要的动力学特性之一.当神经系统受到外电场作用时,会对其动力学行为以及神经电信息的产生、传导产生影响.我们基于Leakyintegrate-and-fire(LIF)神经元模型,建立了外电场作用下改进的LIF神经元模型.采用随时间演化的膜电位曲线和峰放电频率曲线,以及随外电场变化的起始峰放电频率曲线和稳态峰放电频率曲线,研究不同强度、频率外电场作用下改进的LIF模型的适应变化.此外,还利用相邻峰峰间期(ISI)之间的相关进一步阐明外电场对神经元适应的影响.

  • 标签: 峰放电频率适应性 外电场 Leaky integrate—and—fire模型 ISI 相关性
  • 简介:利用参数互异的Fitzhugh—Nagumo神经元构建了含耦合时滞的无标度神经元网络模型,通过数值模拟的方法,提出研究参数异质和耦合时滞影响下神经元网络的共振动力学.结果发现,当耦合项中不含时滞时,适中的参数异质性能够使得神经元网络对外界弱周期信号的响应达到最优,即适中的参数异质性能够诱导神经元网络的共振响应,而且异质诱导共振对耦合强度具有鲁棒.更重要的是,耦合时滞对参数异质作用下神经元网络的共振特性也有着显著影响.当时滞约为信号周期的整数倍时,神经元网络能够周期性地出现共振现象,即适当的耦合时滞能够诱导神经元网络的多重共振,而且这种现象在异质参数的适当范围内都能明显出现.

  • 标签: 共振 异质性 时滞 神经元网络 谱放大因子