学科分类
/ 3
54 个结果
  • 简介:研究了采用自适应模糊控制器抑制桁架结构振动时的主动数目与位置优化问题.通过定义输入能量相关矩阵优化了主动的数目.基于主动的控制能量配置准则,给出了主动优化配置的模型.研究基于整数编码的遗传算法用于大型离散体中的作动器组合优化问题.最后针对挠性空间智能桁架结构的振动控制仿真,使用基于整数编码的遗传算法(GAs)优化主动位置.结果表明对于采用自适应模糊控制律的离散体结构振动控制是行之有效的.

  • 标签: 智能桁架 模糊控制 振动控制 整数编码 主动杆
  • 简介:讨论端部受扭矩作用的非圆截面弹性平衡形态的混沌现象.混沌的产生来源于抗弯刚度的微幅周期变化.基于Kirchhoff动力学比拟理论列写弹性的平衡方程.应用Melnikov方法的解析预测以及Poincaré截面和相轨迹的数值计算证明弹性具有Smale马蹄意义下的混沌形态.给出混沌性态与规则性态所对应弹性几何形状的对照.

  • 标签: 混沌形态 弹性细杆 解析方法 数值计算
  • 简介:根据古典阴阳互补和现代对偶互补的基本思想,通过罗恩提出的一条简单而统一的新途径,系统地建立了平面框架结构折线型弹塑性动力学的各类非传统Hamilton型变分原理.文中首先给出平面框架结构折线型弹塑性动力学的广义虚功原理的表式,然后从该式出发,不仅能得到平面框架结构折线型弹塑性动力学的虚功原理,而且通过所给出的广义Legendre变换,还能系统地成对导出平面框架结构折线型弹塑性动力学的5类变量分原理的互补泛函,以及1类变量和相空间非传统Hamilton型变分原理的泛函.同时,通过这条新途径还能清楚地阐明这些原理的内在联系.

  • 标签: 框架结构 弹塑性动力学 相空间 非传统HAMILTON型变分原理 初值-边值问题
  • 简介:为了更快速、高效地确定含润滑铰间间隙对机构动态特性的影响,文中建立了一种新的计算思路.首先,通过理想机构与含间隙机构的运动学模型求出间隙力,进一步把间隙力以主动力的形式带入动力学方程,得到机构的相应动态特性.然后,以含间隙与润滑的曲柄滑块机构为例,基于二状态接触模型与流体润滑模型,对比分析该模型与干摩擦模型,来进一步验证该方法的正确性与可行性.Simulink仿真数据表明,文中建立的模型能有效地抑制机构的振动,动态特性更接近于理想模型,符合实际情况.

  • 标签: 接触模型 铰间间隙 流体润滑 SIMULINK
  • 简介:为了满足空间探测任务的要求,需采用轻质的伸机构支撑各类探测载荷远离卫星本体以避免平台剩磁对空间测量信息的干扰,而挠性伸的弹性振动会耦合影响到卫星本体,从而降低卫星本体的姿态控制精度.考虑到挠性附件振动的复杂性及其对航天器本体的耦合影响,采用最优指令整形抑制挠性伸的低阶模态振动,并在本体控制中设计自适应扰动抑制滤波器进一步抵消挠性伸的残余振动对本体的干扰作用.仿真结果表明,此复合振动控制方法可显著的提高此小卫星的姿态控制精度.

  • 标签: 挠性伸杆 最优指令整形 自适应扰动抑制滤波器 复合振动控制
  • 简介:建立了齿行星齿轮的动力学模型.其中,齿与齿之间的啮合非线性由弹簧-阻尼器-间隙-啮合误差环节模拟.提出了一种以行星轮转角为变量的时变啮合刚度与时变啮合误差表达形式,解决了变转速下行星齿轮动力学模型的描述和求解问题.通过对动力学模型进行求解,分别研究了转速、齿侧间隙、啮合误差和负载等重要参数对行星齿轮动力学特性的影响.

  • 标签: 行星齿轮 动力学 啮合刚度 建模
  • 简介:构造6节点三角形单元,适合于平面薄膜自由振动的有限元分析.文中采用面积坐标,给出单元的形函数,根据哈密顿原理建立薄膜自由振动方程,推导其单元刚度矩阵和单元质量矩阵.3个典型算例表明,6节点三角形单元的计算结果比ANSYS三角形单元更接近理论解,具有更高的精度.

  • 标签: 平面薄膜振动 有限元分析 6节点三角形单元
  • 简介:研究松弛状态下的非圆截面弹性螺旋细,即带有原始曲率和挠率的非圆截面弹性的平衡稳定性问题.基于Kirchhoff动力学比拟,建立用欧拉角表达的弹性动力学方程.忽略线加速度引起的微小惯性力,仅考虑截面转动的动力学效应,使欧拉方程封闭.证明松弛状态下的非圆截面螺旋无论在空间域或时域均满足一次近似意义下的Lyapunov稳定性条件.从而为螺旋形态弹性细存在于自然界中的广泛性和稳定性作出理论解释.提示负泊松比材料的螺旋可能不稳定.

  • 标签: 弹性细杆 Kirchhoff动力学比拟 LYAPUNOV稳定性
  • 简介:中心裂纹巴西圆盘试样可以用于脆性材料在纯Ⅰ型、纯Ⅱ型以及Ⅰ-Ⅱ复合型载荷下的动态断裂韧度的测试.通过改变径向冲击的加载角口(加载方向相对于裂纹的倾斜角),可以方便地实现不同的Ⅰ、Ⅱ型动态断裂实验.本文用有限元软件ANSYS对试样进行动态复合型断裂模拟分析,研究了不同载荷、不同材料以及不同试样尺寸对动态无量纲应力强度因子的影响,得到了纯Ⅱ型加载所对应的加载角θa的近似计算公式.对于在斜坡载荷作用下的复合型断裂,Ⅰ、Ⅱ型应力强度因子具有相似的时间历程曲线,其比值逐渐趋近于一个常数.本文给出了不同无量纲裂纹长度的试样在不同加载角下对应的Ⅰ、Ⅱ型无量纲应力强度因子的比值K1(t)/KⅡ(t)(该比值称为复合比),利用该复合比,可以通过应变能密度因子准则求出试样的起裂角β0,得到的结果与文献给出的试验结果吻合得很好.

  • 标签: 中心直裂纹巴西圆盘 复合型动态断裂 纯Ⅱ型加载角θⅡ 无量纲应力强度因子 复合比K1(t)/KⅡ(t) 起裂角β0
  • 简介:研究作大范围运动弹塑性平面板的动力学特性.考虑了几何非线性和材料非线性,基于平面应力假设、Mises屈服条件和流动法则,采用绝对节点坐标法,用虚功原理建立了作大范围运动弹塑性平面板的动力学方程.在数值计算时将各时刻的塑性应变储存在全局数组中,实现了塑性应变的迭代计算.通过对带集中质量、作大范围运动平面板的数值仿真研究塑性效应对系统的动力学特性的影响.

  • 标签: 作大范围运动 弹塑性平面板 几何非线性 材料非线性
  • 简介:首先建立了柔性悬臂梁非线性非平面运动的偏微分方程;然后运用Galerkin和多尺度方法得到平均方程,并利用规范形理论进一步将方程化简;最后用能量相位法求出多脉冲跳跃的能量函数序列.Dynamics软件数值计算表明:在系统中确实存在着由多脉冲跳跃而导致的Smale马蹄型混沌.

  • 标签: 非线性动力系统 混沌动力学 柔性悬臂梁 多脉冲轨道分析
  • 简介:通过引入不同的对偶变量,将粘性流体的扰动问题化为具有良好结构特性的可解耦Hamilton系统.利用可解耦Hamilton系统微分形式与积分形式的等价性,导出了粘性流体扰动问题的Hamilton混合能变分原理,并建立了本征函数系之间的双正交关系.

  • 标签: 哈密顿体系 粘性流体 变分原理 双正交关系
  • 简介:用微分求积法分析了轴向移动粘弹性梁非平面非线性振动的动力学行为.轴向移动粘弹性梁非平面非线性振动的数学模型是一非常复杂的非线性偏微分方程组.首先用微分求积法对其控制方程组进行空间离散,得到非线性常微分方程组,然后求解常微分方程组得到数值结果.在数值结果的基础上结合非线性动力学理论,利用分叉图、时间历程图、相图对其非线性动力学特性进行了分析.

  • 标签: 微分求积法 轴向移动粘弹性梁 非平面振动 混沌 分叉
  • 简介:以一种平面三自由度可控挖掘机构为例,运用拉格朗日方法建立了机构的刚体动力学模型,求解得到了各主动的系统广义力;进而针对其半闭环控制系统的控制策略进行研究,基于机构驱动元件.交流控制电机及其驱动器的数学模型,运用模糊算法设计了一种模糊-PID双模控制器并对其进行仿真分析.结果表明:基于模糊算法的控制器在超调量、调节时间、上升时间和抗干扰能力等方面均具有较好性能,满足系统的控制要求.

  • 标签: 多自由度可控机构 挖掘机 动力学 模糊-PID控制
  • 简介:用一个分段线性单峰映射描述了二次映射Feigenbaum吸引子的数学结构,证明了存在一个周期2n的正则Fμ-圈嵌套序列,由其生成的吸引的极小Cantor集与单边符号空间的一个所谓"加法器"拓扑共轭.对现有结果作了若干补充和简化证明.

  • 标签: 二次映射 Feigenbaum吸引子 加法器
  • 简介:针对结构振动的中频问题,提出了一种新的混合分析方法.具有低模态密度的子结构利用有限元建模,高模态密度子结构利用波动方法建模,并利用边界处的位移连续和力平衡条件进行求解.以耦合梁结构为例,给出了具体的计算过程,通过解析方法进行了仿真验证.结果表明了此混合方法的有效性.进一步地计算了高频子结构的能量密度响应,并且通过对比说明,此方法在计算边界位置的能量密度响应时可以得到精确度更高的结果.

  • 标签: 波动 有限元法 中频振动 混合方法 能量密度
  • 简介:分析力学历来是在动力学范围内论述的,结构力学与最优控制模拟关系的共同基础就是分析力学.这表明在结构力学与最优控制理论的架构内也应有分析力学的整套理论.本文就结构力学讲述分析力学,称分析结构力学.保守体系可用Hamilton体系的方法描述,其特点是保辛.保辛给出保守体系结构最重要的特性.有限元法是从结构力学发展的,有限元的单元刚度阵应保持对称性,其实这就是保辛.根据区段单元变形能只与其两端位移有关,就可通过数学分析得到Lagrange括号与Poisson括号,展示了其辛对偶体系、正则方程、正则变换等的内容.

  • 标签: 分析结构力学 有限元 保辛 正则变换 动力学 分析力学
  • 简介:针对工程中需要从火箭结构系统的整体模态中识别纵向模态,根据模态有效质量理论,提出了一种识别火箭结构系统纵向模态的自动辨识方法.以具有集中质量系统的振动特性作为算例,通过有限元软件,建立了具有集中质量系统的梁模型,利用自动辨识的方法,自动辨识出系统的纵向模态,并与应用模态分析法所计算的系统模态信息相比较,这种自动辨识方法不仅能准确的辨识出振动系统的纵向模态,而且还具有自动高效的识别特点.为准确快速建立液体火箭POGO振动系统的动力学模型等工程系统的模型提供理论依据.

  • 标签: 火箭结构系统 纵向模态 模态有效质量 自动辨识 模态分析
  • 简介:叶片与轮盘之间的榫联结构存在接触和摩擦组合运动,在较高的热-机械载荷作用下容易发生微动磨损并导致疲劳破坏.本文采用有限元法对叶片.轮盘榫联结构进行接触分析,计算不同摩擦系数和不同转速情况下的叶片榫头和轮盘榫槽之间的接触压力、接触滑动距离.结果表明,摩擦系数增大,榫联结构接触面上的接触压力和滑动距离减小;转速增加,则接触压力和滑动距离增大.

  • 标签: 叶片-轮盘 榫联结构 有限元法 接触分析