简介:从非线性动力学角度分析了Nakamura模型中各参数对周期振动的影响,揭示了人行桥侧振过程中各因素:如桥上行人重量,同步人群的比例,行人同步与桥自振频率之间的关系描述函数等如何影响桥侧振的振幅.理论分析和实测数据发现:桥侧向振幅过大时,描述行人产生的侧向力与桥频率关系的函数不一定为1.0,且完全有可能远离1.0.
简介:蜂窝夹层结构因其良好的力学特性,在众多工程领域具有非常广泛的应用.本文建立了悬臂边界条件下,蜂窝夹层板的动力学模型并研究其非线性动力学行为.选取文献中更加接近实体有限元解的等效弹性参数公式对蜂窝芯层进行等效简化,得到六角形蜂窝芯的等效弹性参数.基于Reddy高阶剪切变形理论,应用Hamilton原理建立悬臂式蜂窝夹层板在受到面内激励和横向激励联合作用下的偏微分运动方程.然后利用Galerkin方法得到两自由度非自治常微分形式运动方程.在此基础上,通过对悬臂式蜂窝夹层板进行数值模拟分析系统的非线性动力学.结果表明面内激励和横向激励对系统的动力学特性有着重要影响,在不同激励作用下系统会出现周期运动、概周期运动以及混沌运动等复杂的非线性动力学响应.
简介:研究了非线性随机动力系统所对应的Fokker-Planck-kolmogorov(FPK)方程.讨论了微分方程的可朗克(Crank)一尼考尔逊(Nicolson)型隐式有限差分格式以及微分的四阶中心差分格式,将两者相结合,得到FPK方程的四阶中心C-N隐式格式差分解,并与FPK方程的精确解进行了比较.数值结果表明,该方法具有良好的稳定性,且可以解决其他方法在概率密度峰值处偏小,而在尾部处较大等缺点.